本站已收录 番号和无损神作磁力链接/BT种子 

[GigaCourse.Com] Udemy - Machine Learning with SciKit-Learn with Python

种子简介

种子名称: [GigaCourse.Com] Udemy - Machine Learning with SciKit-Learn with Python
文件类型: 视频
文件数目: 54个文件
文件大小: 3.59 GB
收录时间: 2021-10-15 00:58
已经下载: 3
资源热度: 178
最近下载: 2025-1-16 03:20

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:0e5553ca292dbe3b8fdf0d7ce186873f79a8d802&dn=[GigaCourse.Com] Udemy - Machine Learning with SciKit-Learn with Python 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[GigaCourse.Com] Udemy - Machine Learning with SciKit-Learn with Python.torrent
  • 1. Introduction/1. Introduction to Machine Learning.mp427.81MB
  • 1. Introduction/2. Advantages and Disadvantages of Machine Learning.mp426.95MB
  • 10. Movie Review Analysis/1. Movie Review Screen Stream.mp467.84MB
  • 10. Movie Review Analysis/2. Movie Review Screen Stream Continue.mp437.62MB
  • 2. NumPy/1. NumPy Introduction.mp435.77MB
  • 2. NumPy/2. Features and Installation.mp456.83MB
  • 3. NumPy Array/1. NumPy Array Creation.mp455.2MB
  • 3. NumPy Array/10. Copies and Views.mp456.09MB
  • 3. NumPy Array/2. NumPy Array Attributes.mp456.02MB
  • 3. NumPy Array/3. NumPy Array Operations.mp478.5MB
  • 3. NumPy Array/4. NumPy Array Operations Continue.mp493MB
  • 3. NumPy Array/5. NumPy Array Unary Operations.mp435.53MB
  • 3. NumPy Array/6. Numpy Array Splicing.mp498.85MB
  • 3. NumPy Array/7. NumPy Array Shpe.mp467.32MB
  • 3. NumPy Array/8. Stacking Together Different Arrays.mp485.55MB
  • 3. NumPy Array/9. Splitting one Array into Several Smaller ones.mp443.73MB
  • 4. Indexing Arrays of Arrays/1. NumPy Array Indexing.mp461.75MB
  • 4. Indexing Arrays of Arrays/2. NumPy Array Indexing Continue.mp435.43MB
  • 4. Indexing Arrays of Arrays/3. NumPy Array Boolean.mp466.86MB
  • 5. Matlplotlib/1. Introduction to Matlplotlib.mp427.49MB
  • 5. Matlplotlib/2. Understanding Various Functions of Pyplot.mp485.44MB
  • 5. Matlplotlib/3. Multiple Figures and Subplots.mp4110.33MB
  • 6. Pandas/1. Intro to Pandas.mp437.52MB
  • 6. Pandas/2. Intro to Pandas Continue.mp442.55MB
  • 6. Pandas/3. Data Structure in Pandas.mp483.95MB
  • 6. Pandas/4. Data Structure in Pandas Continue.mp4102.17MB
  • 6. Pandas/5. Pandas Column Select.mp479.57MB
  • 6. Pandas/6. Remove Operations.mp4117.42MB
  • 6. Pandas/7. Pandas Arithmetic Operations.mp4103.23MB
  • 6. Pandas/8. Pandas Arithmetic Operations Continue.mp449.67MB
  • 7. Scikit Learn/1. Introduction to Scikit Learn.mp448.75MB
  • 7. Scikit Learn/2. Supervised.mp452.55MB
  • 7. Scikit Learn/3. Unsupervised Learning.mp453.29MB
  • 7. Scikit Learn/4. Load Data Set.mp443.44MB
  • 8. Learning and Predicting/1. Scikit Example Digits.mp445.2MB
  • 8. Learning and Predicting/2. Digits Dataset Using Matplotlib.mp462.8MB
  • 8. Learning and Predicting/3. Understading Metrics of Predicted Digits Dataset.mp441.99MB
  • 8. Learning and Predicting/4. Persisting Models.mp4105.18MB
  • 8. Learning and Predicting/5. K-NN Algorithm with Example.mp4101.37MB
  • 9. Cross Validation/1. Cross Validation.mp4112.01MB
  • 9. Cross Validation/10. Extracting Features.mp446.9MB
  • 9. Cross Validation/11. Occurrences to Frequencies.mp477.07MB
  • 9. Cross Validation/12. Classifier Training.mp460.97MB
  • 9. Cross Validation/13. Performance Analysis on the Test Set.mp4119.41MB
  • 9. Cross Validation/14. Parameter Tuning.mp485.14MB
  • 9. Cross Validation/15. Language Identifcation.mp492.92MB
  • 9. Cross Validation/2. Cross Validation Techniques.mp452.18MB
  • 9. Cross Validation/3. K-Means Clustering Example.mp4103.98MB
  • 9. Cross Validation/4. Agglomeration.mp476.56MB
  • 9. Cross Validation/5. PCA Pipeline.mp4117.16MB
  • 9. Cross Validation/6. Face Recognition.mp453.62MB
  • 9. Cross Validation/7. Face Recognition Output.mp452.15MB
  • 9. Cross Validation/8. Right Estimator.mp459.87MB
  • 9. Cross Validation/9. Text Data Example.mp489.82MB