本站已收录 番号和无损神作磁力链接/BT种子 

[FreeTutorials.Us] data-science-supervised-machine-learning-in-python

种子简介

种子名称: [FreeTutorials.Us] data-science-supervised-machine-learning-in-python
文件类型: 视频
文件数目: 38个文件
文件大小: 409.3 MB
收录时间: 2018-10-8 13:37
已经下载: 3
资源热度: 116
最近下载: 2024-11-5 04:57

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:1273bfe33f8d200c4e218f193dd39ab7a14a0032&dn=[FreeTutorials.Us] data-science-supervised-machine-learning-in-python 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[FreeTutorials.Us] data-science-supervised-machine-learning-in-python.torrent
  • 01 Introduction and Review/001 Introduction and Outline.mp47.62MB
  • 01 Introduction and Review/002 Review of Important Concepts.mp46.01MB
  • 01 Introduction and Review/003 Where to get the Code and Data.mp43.86MB
  • 01 Introduction and Review/004 How to Succeed in this Course.mp48.78MB
  • 02 K-Nearest Neighbor/005 K-Nearest Neighbor Concepts.mp48.6MB
  • 02 K-Nearest Neighbor/006 KNN in Code with MNIST.mp417.96MB
  • 02 K-Nearest Neighbor/007 When KNN Can Fail.mp47.7MB
  • 02 K-Nearest Neighbor/008 KNN for the XOR Problem.mp44.26MB
  • 02 K-Nearest Neighbor/009 KNN for the Donut Problem.mp45.42MB
  • 03 Naive Bayes and Bayes Classifiers/010 Naive Bayes.mp415.69MB
  • 03 Naive Bayes and Bayes Classifiers/011 Naive Bayes Handwritten Example.mp45.83MB
  • 03 Naive Bayes and Bayes Classifiers/012 Naive Bayes in Code with MNIST.mp414.43MB
  • 03 Naive Bayes and Bayes Classifiers/013 Non-Naive Bayes.mp47.3MB
  • 03 Naive Bayes and Bayes Classifiers/014 Bayes Classifier in Code with MNIST.mp44.44MB
  • 03 Naive Bayes and Bayes Classifiers/015 Linear Discriminant Analysis LDA and Quadratic Discriminant Analysis QDA.mp410.35MB
  • 03 Naive Bayes and Bayes Classifiers/016 Generative vs Discriminative Models.mp45.12MB
  • 04 Decision Trees/017 Decision Tree Basics.mp48.28MB
  • 04 Decision Trees/018 Information Entropy.mp46.99MB
  • 04 Decision Trees/019 Maximizing Information Gain.mp413.96MB
  • 04 Decision Trees/020 Choosing the Best Split.mp46.72MB
  • 04 Decision Trees/021 Decision Tree in Code.mp430.33MB
  • 05 Perceptrons/022 Perceptron Concepts.mp412.22MB
  • 05 Perceptrons/023 Perceptron in Code.mp413.76MB
  • 05 Perceptrons/024 Perceptron for MNIST and XOR.mp48.74MB
  • 05 Perceptrons/025 Perceptron Loss Function.mp46.87MB
  • 06 Practical Machine Learning/026 Hyperparameters and Cross-Validation.mp47.43MB
  • 06 Practical Machine Learning/027 Feature Extraction and Feature Selection.mp47.09MB
  • 06 Practical Machine Learning/028 Comparison to Deep Learning.mp48.7MB
  • 06 Practical Machine Learning/029 Multiclass Classification.mp45.65MB
  • 06 Practical Machine Learning/030 Sci-Kit Learn.mp415.81MB
  • 06 Practical Machine Learning/031 Regression with Sci-Kit Learn is Easy.mp410.75MB
  • 07 Building a Machine Learning Web Service/032 Building a Machine Learning Web Service Concepts.mp47.24MB
  • 07 Building a Machine Learning Web Service/033 Building a Machine Learning Web Service Code.mp411.87MB
  • 08 Conclusion/034 Whats Next Support Vector Machines and Ensemble Methods e.g. Random Forest.mp46.27MB
  • 09 Appendix/035 How to install Numpy Scipy Matplotlib and Sci-Kit Learn.mp443.92MB
  • 09 Appendix/036 How to Code by Yourself part 1.mp424.53MB
  • 09 Appendix/037 How to Code by Yourself part 2.mp414.8MB
  • 09 Appendix/038 Where to get Udemy coupons and FREE deep learning material.mp44.02MB