种子简介
种子名称:
[FreeTutorials.Us] data-science-supervised-machine-learning-in-python
文件类型:
视频
文件数目:
38个文件
文件大小:
409.3 MB
收录时间:
2018-10-8 13:37
已经下载:
3次
资源热度:
116
最近下载:
2024-11-5 04:57
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:1273bfe33f8d200c4e218f193dd39ab7a14a0032&dn=[FreeTutorials.Us] data-science-supervised-machine-learning-in-python
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
[FreeTutorials.Us] data-science-supervised-machine-learning-in-python.torrent
01 Introduction and Review/001 Introduction and Outline.mp47.62MB
01 Introduction and Review/002 Review of Important Concepts.mp46.01MB
01 Introduction and Review/003 Where to get the Code and Data.mp43.86MB
01 Introduction and Review/004 How to Succeed in this Course.mp48.78MB
02 K-Nearest Neighbor/005 K-Nearest Neighbor Concepts.mp48.6MB
02 K-Nearest Neighbor/006 KNN in Code with MNIST.mp417.96MB
02 K-Nearest Neighbor/007 When KNN Can Fail.mp47.7MB
02 K-Nearest Neighbor/008 KNN for the XOR Problem.mp44.26MB
02 K-Nearest Neighbor/009 KNN for the Donut Problem.mp45.42MB
03 Naive Bayes and Bayes Classifiers/010 Naive Bayes.mp415.69MB
03 Naive Bayes and Bayes Classifiers/011 Naive Bayes Handwritten Example.mp45.83MB
03 Naive Bayes and Bayes Classifiers/012 Naive Bayes in Code with MNIST.mp414.43MB
03 Naive Bayes and Bayes Classifiers/013 Non-Naive Bayes.mp47.3MB
03 Naive Bayes and Bayes Classifiers/014 Bayes Classifier in Code with MNIST.mp44.44MB
03 Naive Bayes and Bayes Classifiers/015 Linear Discriminant Analysis LDA and Quadratic Discriminant Analysis QDA.mp410.35MB
03 Naive Bayes and Bayes Classifiers/016 Generative vs Discriminative Models.mp45.12MB
04 Decision Trees/017 Decision Tree Basics.mp48.28MB
04 Decision Trees/018 Information Entropy.mp46.99MB
04 Decision Trees/019 Maximizing Information Gain.mp413.96MB
04 Decision Trees/020 Choosing the Best Split.mp46.72MB
04 Decision Trees/021 Decision Tree in Code.mp430.33MB
05 Perceptrons/022 Perceptron Concepts.mp412.22MB
05 Perceptrons/023 Perceptron in Code.mp413.76MB
05 Perceptrons/024 Perceptron for MNIST and XOR.mp48.74MB
05 Perceptrons/025 Perceptron Loss Function.mp46.87MB
06 Practical Machine Learning/026 Hyperparameters and Cross-Validation.mp47.43MB
06 Practical Machine Learning/027 Feature Extraction and Feature Selection.mp47.09MB
06 Practical Machine Learning/028 Comparison to Deep Learning.mp48.7MB
06 Practical Machine Learning/029 Multiclass Classification.mp45.65MB
06 Practical Machine Learning/030 Sci-Kit Learn.mp415.81MB
06 Practical Machine Learning/031 Regression with Sci-Kit Learn is Easy.mp410.75MB
07 Building a Machine Learning Web Service/032 Building a Machine Learning Web Service Concepts.mp47.24MB
07 Building a Machine Learning Web Service/033 Building a Machine Learning Web Service Code.mp411.87MB
08 Conclusion/034 Whats Next Support Vector Machines and Ensemble Methods e.g. Random Forest.mp46.27MB
09 Appendix/035 How to install Numpy Scipy Matplotlib and Sci-Kit Learn.mp443.92MB
09 Appendix/036 How to Code by Yourself part 1.mp424.53MB
09 Appendix/037 How to Code by Yourself part 2.mp414.8MB
09 Appendix/038 Where to get Udemy coupons and FREE deep learning material.mp44.02MB