种子简介
种子名称:
Deep Learning Projects with PyTorch [Video]
文件类型:
视频
文件数目:
27个文件
文件大小:
595.12 MB
收录时间:
2019-1-4 21:50
已经下载:
3次
资源热度:
106
最近下载:
2025-1-1 14:53
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:24d9d4ace499757999b60bf9237b9498af9e7ab9&dn=Deep Learning Projects with PyTorch [Video]
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
Deep Learning Projects with PyTorch [Video].torrent
1.Getting Ready with PyTorch/02.Using PyTorch.mp438.82MB
1.Getting Ready with PyTorch/03.Understanding Regression.mp412.36MB
1.Getting Ready with PyTorch/04.Linear Regression and Logistic Regression.mp432.91MB
2.Convolutional Neural Network/05.Understanding Convolutional Neural Network.mp417.03MB
2.Convolutional Neural Network/06.Looking into Images from a Machine Perspective.mp422.28MB
2.Convolutional Neural Network/07.Making CNN.mp432.16MB
2.Convolutional Neural Network/08.Pooling Layers.mp418.6MB
2.Convolutional Neural Network/09.Output Layer.mp420.52MB
3.Understanding RNN and LSTM/10.Understanding Recurrent Neural Network.mp428.01MB
3.Understanding RNN and LSTM/11.Making RNN for Prediction.mp429.62MB
3.Understanding RNN and LSTM/12.Why LSTM.mp449.66MB
3.Understanding RNN and LSTM/13.Moving to LSTM.mp410.14MB
4.Using Autoencoders for Fraud Detection/14.Getting Ready with Data.mp425.9MB
4.Using Autoencoders for Fraud Detection/15.Developing a Model.mp426.48MB
4.Using Autoencoders for Fraud Detection/16.Getting Output.mp48.2MB
5.Recommending a Movie with Boltzmann Machines/17.Introduction to Boltzmann Machines.mp439.7MB
5.Recommending a Movie with Boltzmann Machines/18.Getting Ready for Recommender System.mp417.66MB
5.Recommending a Movie with Boltzmann Machines/19.Making Boltzmann Machines.mp458.07MB
5.Recommending a Movie with Boltzmann Machines/20.Getting Output.mp43.87MB
6.Movie Rating Using a Autoencoders/21.Introduction to Autoencoders.mp431.22MB
6.Movie Rating Using a Autoencoders/22.Getting Ready for Recommender System.mp48MB
6.Movie Rating Using a Autoencoders/23.Making Autoencoders.mp422.71MB
6.Movie Rating Using a Autoencoders/24.Getting Output.mp43.82MB
7.Making Model for Object Recognition/25.Getting Ready with Data.mp47.94MB
7.Making Model for Object Recognition/26.Developing a Model.mp415.77MB
7.Making Model for Object Recognition/27.Getting Output.mp49.38MB
1.Getting Ready with PyTorch/01.The Course Overview.mp44.27MB