种子简介
种子名称:
[FTUForum.com] [UDEMY] Deep Learning Plunge into Deep Learning [FTU]
文件类型:
视频
文件数目:
36个文件
文件大小:
1.08 GB
收录时间:
2021-5-6 18:20
已经下载:
3次
资源热度:
202
最近下载:
2024-12-14 16:36
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:293a7f57b5be044e51940205653c3449e33670e5&dn=[FTUForum.com] [UDEMY] Deep Learning Plunge into Deep Learning [FTU]
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
[FTUForum.com] [UDEMY] Deep Learning Plunge into Deep Learning [FTU].torrent
1. Introduction/1. Applications of Deep Learning.mp444.71MB
1. Introduction/2. What is Deep Learning.mp410.69MB
1. Introduction/3. Why Deep Learning.mp45.63MB
1. Introduction/4. Why now.mp416.47MB
2. Fundamentals/1. Hello World of Deep learning.mp45.72MB
2. Fundamentals/2. Dataset and Features.mp47.34MB
2. Fundamentals/3. Classification.mp410.13MB
3. Neural Networks/1. Perceptron.mp4102.93MB
3. Neural Networks/2. Sigmoid Function.mp443.02MB
3. Neural Networks/3. Softmax Function.mp455.92MB
3. Neural Networks/4. One Hot Encoding.mp430.71MB
3. Neural Networks/5. Activation Functions.mp424.89MB
3. Neural Networks/6. Logic Gates and XOR Problem.mp414.3MB
4. Training Neural Networks/1. Cross Entropy.mp436.99MB
4. Training Neural Networks/10. Drop out.mp47.92MB
4. Training Neural Networks/11. Vanishing Gradient Problem.mp423.84MB
4. Training Neural Networks/2. Loss Optimization.mp417.11MB
4. Training Neural Networks/3. Gradient Descent.mp467.55MB
4. Training Neural Networks/4. Non Linear Models.mp427.69MB
4. Training Neural Networks/5. Feed Forward.mp426.94MB
4. Training Neural Networks/6. Backward Propagation.mp413.6MB
4. Training Neural Networks/7. Overfitting problem.mp430.17MB
4. Training Neural Networks/8. Early Stopping.mp426.06MB
4. Training Neural Networks/9. Regularization.mp421.39MB
5. Convolution Neural Networks/1. Need for feature extraction.mp441.5MB
5. Convolution Neural Networks/2. Preprocessing.mp410.18MB
5. Convolution Neural Networks/3. Convolution Operation.mp4226.33MB
5. Convolution Neural Networks/4. Pooling Layer.mp429.92MB
5. Convolution Neural Networks/5. Flattening.mp415.11MB
6. Sequence Models/1. Recurrent Neural Networks.mp440.64MB
6. Sequence Models/2. LSTMs.mp418.65MB
6. Sequence Models/3. Architecture of LSTMs.mp420.03MB
6. Sequence Models/4. Forget Gate.mp416.91MB
6. Sequence Models/5. Learn Gate.mp49.62MB
6. Sequence Models/6. Remember Gate.mp42.41MB
6. Sequence Models/7. Use Gate.mp44.17MB