本站已收录 番号和无损神作磁力链接/BT种子 

[CourseClub.NET] Coursera - Convolutional Neural Networks

种子简介

种子名称: [CourseClub.NET] Coursera - Convolutional Neural Networks
文件类型: 视频
文件数目: 44个文件
文件大小: 553.19 MB
收录时间: 2019-7-12 10:14
已经下载: 3
资源热度: 210
最近下载: 2024-12-14 20:57

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:3229af916b025ba92c4bf1f1e06c2e56d96ff709&dn=[CourseClub.NET] Coursera - Convolutional Neural Networks 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[CourseClub.NET] Coursera - Convolutional Neural Networks.torrent
  • 01_foundations-of-convolutional-neural-networks/01_convolutional-neural-networks/01_computer-vision.mp47.63MB
  • 01_foundations-of-convolutional-neural-networks/01_convolutional-neural-networks/02_edge-detection-example.mp413.91MB
  • 01_foundations-of-convolutional-neural-networks/01_convolutional-neural-networks/03_more-edge-detection.mp49.85MB
  • 01_foundations-of-convolutional-neural-networks/01_convolutional-neural-networks/04_padding.mp411.94MB
  • 01_foundations-of-convolutional-neural-networks/01_convolutional-neural-networks/05_strided-convolutions.mp410.98MB
  • 01_foundations-of-convolutional-neural-networks/01_convolutional-neural-networks/06_convolutions-over-volume.mp412.89MB
  • 01_foundations-of-convolutional-neural-networks/01_convolutional-neural-networks/07_one-layer-of-a-convolutional-network.mp420.06MB
  • 01_foundations-of-convolutional-neural-networks/01_convolutional-neural-networks/08_simple-convolutional-network-example.mp410.39MB
  • 01_foundations-of-convolutional-neural-networks/01_convolutional-neural-networks/09_pooling-layers.mp412.11MB
  • 01_foundations-of-convolutional-neural-networks/01_convolutional-neural-networks/10_cnn-example.mp415.91MB
  • 01_foundations-of-convolutional-neural-networks/01_convolutional-neural-networks/11_why-convolutions.mp412.34MB
  • 01_foundations-of-convolutional-neural-networks/03_heroes-of-deep-learning-optional/01_yann-lecun-interview.mp475.53MB
  • 02_deep-convolutional-models-case-studies/01_case-studies/01_why-look-at-case-studies.mp44.67MB
  • 02_deep-convolutional-models-case-studies/01_case-studies/02_classic-networks.mp422.75MB
  • 02_deep-convolutional-models-case-studies/01_case-studies/03_resnets.mp49MB
  • 02_deep-convolutional-models-case-studies/01_case-studies/04_why-resnets-work.mp411.92MB
  • 02_deep-convolutional-models-case-studies/01_case-studies/05_networks-in-networks-and-1x1-convolutions.mp48.19MB
  • 02_deep-convolutional-models-case-studies/01_case-studies/06_inception-network-motivation.mp412.65MB
  • 02_deep-convolutional-models-case-studies/01_case-studies/07_inception-network.mp411.37MB
  • 02_deep-convolutional-models-case-studies/02_practical-advices-for-using-convnets/01_using-open-source-implementation.mp48.14MB
  • 02_deep-convolutional-models-case-studies/02_practical-advices-for-using-convnets/02_transfer-learning.mp411.57MB
  • 02_deep-convolutional-models-case-studies/02_practical-advices-for-using-convnets/03_data-augmentation.mp412.43MB
  • 02_deep-convolutional-models-case-studies/02_practical-advices-for-using-convnets/04_state-of-computer-vision.mp415.47MB
  • 03_object-detection/01_detection-algorithms/01_object-localization.mp415.36MB
  • 03_object-detection/01_detection-algorithms/02_landmark-detection.mp48.17MB
  • 03_object-detection/01_detection-algorithms/03_object-detection.mp47.29MB
  • 03_object-detection/01_detection-algorithms/04_convolutional-implementation-of-sliding-windows.mp414.44MB
  • 03_object-detection/01_detection-algorithms/05_bounding-box-predictions.mp419.58MB
  • 03_object-detection/01_detection-algorithms/06_intersection-over-union.mp45.47MB
  • 03_object-detection/01_detection-algorithms/07_non-max-suppression.mp410.09MB
  • 03_object-detection/01_detection-algorithms/08_anchor-boxes.mp413.47MB
  • 03_object-detection/01_detection-algorithms/09_yolo-algorithm.mp49.07MB
  • 03_object-detection/01_detection-algorithms/10_optional-region-proposals.mp48.8MB
  • 04_special-applications-face-recognition-neural-style-transfer/01_face-recognition/01_what-is-face-recognition.mp48.41MB
  • 04_special-applications-face-recognition-neural-style-transfer/01_face-recognition/02_one-shot-learning.mp45.88MB
  • 04_special-applications-face-recognition-neural-style-transfer/01_face-recognition/03_siamese-network.mp46.09MB
  • 04_special-applications-face-recognition-neural-style-transfer/01_face-recognition/04_triplet-loss.mp419.71MB
  • 04_special-applications-face-recognition-neural-style-transfer/01_face-recognition/05_face-verification-and-binary-classification.mp47.87MB
  • 04_special-applications-face-recognition-neural-style-transfer/02_neural-style-transfer/01_what-is-neural-style-transfer.mp42.99MB
  • 04_special-applications-face-recognition-neural-style-transfer/02_neural-style-transfer/02_what-are-deep-convnets-learning.mp411.26MB
  • 04_special-applications-face-recognition-neural-style-transfer/02_neural-style-transfer/03_cost-function.mp45.2MB
  • 04_special-applications-face-recognition-neural-style-transfer/02_neural-style-transfer/04_content-cost-function.mp44.66MB
  • 04_special-applications-face-recognition-neural-style-transfer/02_neural-style-transfer/05_style-cost-function.mp416.36MB
  • 04_special-applications-face-recognition-neural-style-transfer/02_neural-style-transfer/06_1d-and-3d-generalizations.mp411.32MB