本站已收录 番号和无损神作磁力链接/BT种子 

[CourseClub.Me] Oreilly - Privacy-Preserving Machine Learning

种子简介

种子名称: [CourseClub.Me] Oreilly - Privacy-Preserving Machine Learning
文件类型: 视频
文件数目: 49个文件
文件大小: 1.15 GB
收录时间: 2024-1-17 23:26
已经下载: 3
资源热度: 130
最近下载: 2024-12-23 08:40

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:338f20d7411c2a59a3196e14d21ed7b2b3010c17&dn=[CourseClub.Me] Oreilly - Privacy-Preserving Machine Learning 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[CourseClub.Me] Oreilly - Privacy-Preserving Machine Learning.torrent
  • 001. Part 1. Basics of privacy-preserving machine learning with differential privacy.mp42.34MB
  • 002. Chapter 1. Privacy considerations in machine learning.mp412.17MB
  • 003. Chapter 1. The threat of learning beyond the intended purpose.mp415.55MB
  • 004. Chapter 1. Threats and attacks for ML systems.mp434.41MB
  • 005. Chapter 1. Securing privacy while learning from data Privacy-preserving machine learning.mp428.85MB
  • 006. Chapter 1. How is this book structured.mp46.44MB
  • 007. Chapter 1. Summary.mp43.81MB
  • 008. Chapter 2. Differential privacy for machine learning.mp460.01MB
  • 009. Chapter 2. Mechanisms of differential privacy.mp452.83MB
  • 010. Chapter 2. Properties of differential privacy.mp447.45MB
  • 011. Chapter 2. Summary.mp45.1MB
  • 012. Chapter 3. Advanced concepts of differential privacy for machine learning.mp419.6MB
  • 013. Chapter 3. Differentially private supervised learning algorithms.mp447.46MB
  • 014. Chapter 3. Differentially private unsupervised learning algorithms.mp417.24MB
  • 015. Chapter 3. Case study Differentially private principal component analysis.mp464.12MB
  • 016. Chapter 3. Summary.mp44.54MB
  • 017. Part 2. Local differential privacy and synthetic data generation.mp41.14MB
  • 018. Chapter 4. Local differential privacy for machine learning.mp448.89MB
  • 019. Chapter 4. The mechanisms of local differential privacy.mp445.43MB
  • 020. Chapter 4. Summary.mp43.61MB
  • 021. Chapter 5. Advanced LDP mechanisms for machine learning.mp43.84MB
  • 022. Chapter 5. Advanced LDP mechanisms.mp425.93MB
  • 023. Chapter 5. A case study implementing LDP naive Bayes classification.mp453.74MB
  • 024. Chapter 5. Summary.mp42.49MB
  • 025. Chapter 6. Privacy-preserving synthetic data generation.mp418MB
  • 026. Chapter 6. Assuring privacy via data anonymization.mp415.08MB
  • 027. Chapter 6. DP for privacy-preserving synthetic data generation.mp428.43MB
  • 028. Chapter 6. Case study on private synthetic data release via feature-level micro-aggregation.mp444.93MB
  • 029. Chapter 6. Summary.mp42.83MB
  • 030. Part 3. Building privacy-assured machine learning applications.mp41.67MB
  • 031. Chapter 7. Privacy-preserving data mining techniques.mp49.68MB
  • 032. Chapter 7. Privacy protection in data processing and mining.mp48.09MB
  • 033. Chapter 7.3 Protecting privacy by modifying the input.mp44.36MB
  • 034. Chapter 7. Protecting privacy when publishing data.mp448.96MB
  • 035. Chapter 7. Summary.mp42.27MB
  • 036. Chapter 8. Privacy-preserving data management and operations.mp44.52MB
  • 037. Chapter 8. Privacy protection beyond k-anonymity.mp429.68MB
  • 038. Chapter 8. Protecting privacy by modifying the data mining output.mp413.89MB
  • 039. Chapter 8. Privacy protection in data management systems.mp480.56MB
  • 040. Chapter 8. Summary.mp43.63MB
  • 041. Chapter 9. Compressive privacy for machine learning.mp414.2MB
  • 042. Chapter 9. The mechanisms of compressive privacy.mp415.76MB
  • 043. Chapter 9. Using compressive privacy for ML applications.mp436.4MB
  • 044. Chapter 9. Case study Privacy-preserving PCA and DCA on horizontally partitioned data.mp4103.76MB
  • 045. Chapter 9. Summary.mp43.38MB
  • 046. Chapter 10. Putting it all together Designing a privacy-enhanced platform (DataHub).mp419.64MB
  • 047. Chapter 10. Understanding the research collaboration workspace.mp427.07MB
  • 048. Chapter 10. Integrating privacy and security technologies into DataHub.mp431.84MB
  • 049. Chapter 10. Summary.mp43.42MB