种子简介
种子名称:
[CourseClub.Me] Oreilly - Privacy-Preserving Machine Learning
文件类型:
视频
文件数目:
49个文件
文件大小:
1.15 GB
收录时间:
2024-1-17 23:26
已经下载:
3次
资源热度:
130
最近下载:
2024-12-23 08:40
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:338f20d7411c2a59a3196e14d21ed7b2b3010c17&dn=[CourseClub.Me] Oreilly - Privacy-Preserving Machine Learning
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
[CourseClub.Me] Oreilly - Privacy-Preserving Machine Learning.torrent
001. Part 1. Basics of privacy-preserving machine learning with differential privacy.mp42.34MB
002. Chapter 1. Privacy considerations in machine learning.mp412.17MB
003. Chapter 1. The threat of learning beyond the intended purpose.mp415.55MB
004. Chapter 1. Threats and attacks for ML systems.mp434.41MB
005. Chapter 1. Securing privacy while learning from data Privacy-preserving machine learning.mp428.85MB
006. Chapter 1. How is this book structured.mp46.44MB
007. Chapter 1. Summary.mp43.81MB
008. Chapter 2. Differential privacy for machine learning.mp460.01MB
009. Chapter 2. Mechanisms of differential privacy.mp452.83MB
010. Chapter 2. Properties of differential privacy.mp447.45MB
011. Chapter 2. Summary.mp45.1MB
012. Chapter 3. Advanced concepts of differential privacy for machine learning.mp419.6MB
013. Chapter 3. Differentially private supervised learning algorithms.mp447.46MB
014. Chapter 3. Differentially private unsupervised learning algorithms.mp417.24MB
015. Chapter 3. Case study Differentially private principal component analysis.mp464.12MB
016. Chapter 3. Summary.mp44.54MB
017. Part 2. Local differential privacy and synthetic data generation.mp41.14MB
018. Chapter 4. Local differential privacy for machine learning.mp448.89MB
019. Chapter 4. The mechanisms of local differential privacy.mp445.43MB
020. Chapter 4. Summary.mp43.61MB
021. Chapter 5. Advanced LDP mechanisms for machine learning.mp43.84MB
022. Chapter 5. Advanced LDP mechanisms.mp425.93MB
023. Chapter 5. A case study implementing LDP naive Bayes classification.mp453.74MB
024. Chapter 5. Summary.mp42.49MB
025. Chapter 6. Privacy-preserving synthetic data generation.mp418MB
026. Chapter 6. Assuring privacy via data anonymization.mp415.08MB
027. Chapter 6. DP for privacy-preserving synthetic data generation.mp428.43MB
028. Chapter 6. Case study on private synthetic data release via feature-level micro-aggregation.mp444.93MB
029. Chapter 6. Summary.mp42.83MB
030. Part 3. Building privacy-assured machine learning applications.mp41.67MB
031. Chapter 7. Privacy-preserving data mining techniques.mp49.68MB
032. Chapter 7. Privacy protection in data processing and mining.mp48.09MB
033. Chapter 7.3 Protecting privacy by modifying the input.mp44.36MB
034. Chapter 7. Protecting privacy when publishing data.mp448.96MB
035. Chapter 7. Summary.mp42.27MB
036. Chapter 8. Privacy-preserving data management and operations.mp44.52MB
037. Chapter 8. Privacy protection beyond k-anonymity.mp429.68MB
038. Chapter 8. Protecting privacy by modifying the data mining output.mp413.89MB
039. Chapter 8. Privacy protection in data management systems.mp480.56MB
040. Chapter 8. Summary.mp43.63MB
041. Chapter 9. Compressive privacy for machine learning.mp414.2MB
042. Chapter 9. The mechanisms of compressive privacy.mp415.76MB
043. Chapter 9. Using compressive privacy for ML applications.mp436.4MB
044. Chapter 9. Case study Privacy-preserving PCA and DCA on horizontally partitioned data.mp4103.76MB
045. Chapter 9. Summary.mp43.38MB
046. Chapter 10. Putting it all together Designing a privacy-enhanced platform (DataHub).mp419.64MB
047. Chapter 10. Understanding the research collaboration workspace.mp427.07MB
048. Chapter 10. Integrating privacy and security technologies into DataHub.mp431.84MB
049. Chapter 10. Summary.mp43.42MB