本站已收录 番号和无损神作磁力链接/BT种子 

[DesireCourse.Net] Udemy - Machine Learning for Beginners Linear Regression model in R

种子简介

种子名称: [DesireCourse.Net] Udemy - Machine Learning for Beginners Linear Regression model in R
文件类型: 视频
文件数目: 53个文件
文件大小: 2.77 GB
收录时间: 2021-9-27 08:00
已经下载: 3
资源热度: 344
最近下载: 2024-11-7 19:08

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:3712b307a5e210be42f62b0fe86b1f432d8f9f70&dn=[DesireCourse.Net] Udemy - Machine Learning for Beginners Linear Regression model in R 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[DesireCourse.Net] Udemy - Machine Learning for Beginners Linear Regression model in R.torrent
  • 1. Introduction/1. Welcome to the course!.mp415.41MB
  • 1. Introduction/3. Course contents.mp447.05MB
  • 2. Basics of Statistics/1. Types of Data.mp425.87MB
  • 2. Basics of Statistics/2. Types of Statistics.mp413.24MB
  • 2. Basics of Statistics/3. Describing the data graphically.mp482.16MB
  • 2. Basics of Statistics/4. Measures of Centers.mp445.68MB
  • 2. Basics of Statistics/6. Measures of Dispersion.mp428.37MB
  • 3. Getting started with R and R studio/1. Installing R and R studio.mp440.84MB
  • 3. Getting started with R and R studio/2. Basics of R and R studio.mp448.19MB
  • 3. Getting started with R and R studio/3. Packages in R.mp498.67MB
  • 3. Getting started with R and R studio/4. Inputting data part 1 Inbuilt datasets of R.mp446.15MB
  • 3. Getting started with R and R studio/5. Inputting data part 2 Manual data entry.mp430.88MB
  • 3. Getting started with R and R studio/6. Inputting data part 3 Importing from CSV or Text files.mp469.15MB
  • 3. Getting started with R and R studio/7. Creating Barplots in R.mp4117.54MB
  • 3. Getting started with R and R studio/8. Creating Histograms in R.mp451.51MB
  • 4. Introduction to Machine Learning/1. Introduction to Machine Learning.mp4123.89MB
  • 4. Introduction to Machine Learning/2. Building a Machine Learning model.mp445.27MB
  • 5. Data Preprocessing/1. Gathering Business Knowledge.mp425.12MB
  • 5. Data Preprocessing/10. Outlier Treatment in R.mp437.97MB
  • 5. Data Preprocessing/12. Missing Value imputation.mp427.56MB
  • 5. Data Preprocessing/13. Missing Value imputation in R.mp431.77MB
  • 5. Data Preprocessing/15. Seasonality in Data.mp420.89MB
  • 5. Data Preprocessing/16. Bi-variate Analysis and Variable Transformation.mp4113.76MB
  • 5. Data Preprocessing/17. Variable transformation in R.mp467.85MB
  • 5. Data Preprocessing/19. Non Usable Variables.mp423.95MB
  • 5. Data Preprocessing/2. Data Exploration.mp423.41MB
  • 5. Data Preprocessing/20. Dummy variable creation Handling qualitative data.mp440.61MB
  • 5. Data Preprocessing/21. Dummy variable creation in R.mp452.26MB
  • 5. Data Preprocessing/23. Correlation Matrix and cause-effect relationship.mp481.28MB
  • 5. Data Preprocessing/24. Correlation Matrix in R.mp495.06MB
  • 5. Data Preprocessing/3. The Data and the Data Dictionary.mp478.58MB
  • 5. Data Preprocessing/4. Importing the dataset into R.mp415.98MB
  • 5. Data Preprocessing/6. Univariate Analysis and EDD.mp427.3MB
  • 5. Data Preprocessing/7. EDD in R.mp4112.27MB
  • 5. Data Preprocessing/9. Outlier Treatment.mp427.76MB
  • 6. Linear Regression Model/1. The problem statement.mp410.68MB
  • 6. Linear Regression Model/11. Multiple Linear Regression in R.mp473.1MB
  • 6. Linear Regression Model/14. Test-Train split.mp449.15MB
  • 6. Linear Regression Model/15. Bias Variance trade-off.mp429.58MB
  • 6. Linear Regression Model/16. Test-Train Split in R.mp491.05MB
  • 6. Linear Regression Model/2. Basic equations and Ordinary Least Squared (OLS) method.mp450.23MB
  • 6. Linear Regression Model/3. Assessing Accuracy of predicted coefficients.mp4104.44MB
  • 6. Linear Regression Model/4. Assessing Model Accuracy - RSE and R squared.mp449.73MB
  • 6. Linear Regression Model/5. Simple Linear Regression in R.mp450.6MB
  • 6. Linear Regression Model/7. Multiple Linear Regression.mp438.92MB
  • 6. Linear Regression Model/8. The F - statistic.mp464.16MB
  • 6. Linear Regression Model/9. Interpreting result for categorical Variable.mp427.16MB
  • 7. Regression models other than OLS/1. Linear models other than OLS.mp419.19MB
  • 7. Regression models other than OLS/2. Subset Selection techniques.mp487.11MB
  • 7. Regression models other than OLS/3. Subset selection in R.mp476.62MB
  • 7. Regression models other than OLS/5. Shrinkage methods - Ridge Regression and The Lasso.mp438.67MB
  • 7. Regression models other than OLS/6. Ridge regression and Lasso in R.mp4124.25MB
  • 7. Regression models other than OLS/7. Heteroscedasticity.mp417.72MB