本站已收录 番号和无损神作磁力链接/BT种子 

[FreeCoursesOnline.Me] PacktPub - Data Science Model Deployments and Cloud Computing on GCP

种子简介

种子名称: [FreeCoursesOnline.Me] PacktPub - Data Science Model Deployments and Cloud Computing on GCP
文件类型: 视频
文件数目: 79个文件
文件大小: 1.71 GB
收录时间: 2024-11-30 02:28
已经下载: 3
资源热度: 10
最近下载: 2024-12-2 18:34

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:54c5acd577fecd490f25350d1e2dea673be25c55&dn=[FreeCoursesOnline.Me] PacktPub - Data Science Model Deployments and Cloud Computing on GCP 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[FreeCoursesOnline.Me] PacktPub - Data Science Model Deployments and Cloud Computing on GCP.torrent
  • Chapter 1 Course Introduction and Prerequisites/001. Course Introduction and Section Walkthrough.mp48.34MB
  • Chapter 1 Course Introduction and Prerequisites/002. Course Prerequisites.mp43.29MB
  • Chapter 10 Cloud Scheduler and Application Monitoring/001. Introduction to Cloud Scheduler.mp43.63MB
  • Chapter 10 Cloud Scheduler and Application Monitoring/002. Lab - Cloud Scheduler in Action.mp419.88MB
  • Chapter 10 Cloud Scheduler and Application Monitoring/003. Lab - Set Up Alerting for Google App Engine Applications.mp434.26MB
  • Chapter 10 Cloud Scheduler and Application Monitoring/004. Lab - Set Up Alerting for Cloud-Run Applications.mp428.7MB
  • Chapter 10 Cloud Scheduler and Application Monitoring/005. Lab Assignment - Set Up Alerting for Cloud Function Applications.mp412.17MB
  • Chapter 2 Modern-Day Cloud Concepts/001. Introduction.mp42.02MB
  • Chapter 2 Modern-Day Cloud Concepts/002. Scalability - Horizontal Versus Vertical Scaling.mp415.32MB
  • Chapter 2 Modern-Day Cloud Concepts/003. Serverless Versus Servers and Containerization.mp431.72MB
  • Chapter 2 Modern-Day Cloud Concepts/004. Microservice Architecture.mp413.5MB
  • Chapter 2 Modern-Day Cloud Concepts/005. Event-Driven Architecture.mp413.66MB
  • Chapter 3 Get Started with Google Cloud/001. Set Up GCP Trial Account.mp415.16MB
  • Chapter 3 Get Started with Google Cloud/002. Google Cloud CLI Setup.mp418.37MB
  • Chapter 3 Get Started with Google Cloud/003. Get Comfortable with Basics of gcloud CLI.mp438.27MB
  • Chapter 3 Get Started with Google Cloud/004. gsutil and Bash Command Basics.mp437.21MB
  • Chapter 4 Cloud Run - Serverless and Containerized Applications/001. Section Introduction.mp41.26MB
  • Chapter 4 Cloud Run - Serverless and Containerized Applications/002. Introduction to Dockers.mp48.48MB
  • Chapter 4 Cloud Run - Serverless and Containerized Applications/003. Lab - Install Docker Engine.mp415.36MB
  • Chapter 4 Cloud Run - Serverless and Containerized Applications/004. Lab - Run Docker Locally.mp423.68MB
  • Chapter 4 Cloud Run - Serverless and Containerized Applications/005. Lab - Run and Ship Applications Using the Container Registry.mp452.03MB
  • Chapter 4 Cloud Run - Serverless and Containerized Applications/006. Introduction to Cloud Run.mp43.61MB
  • Chapter 4 Cloud Run - Serverless and Containerized Applications/007. Lab - Deploy Python Application to Cloud Run.mp443.96MB
  • Chapter 4 Cloud Run - Serverless and Containerized Applications/008. Cloud Run Application Scalability Parameters.mp423.88MB
  • Chapter 4 Cloud Run - Serverless and Containerized Applications/009. Introduction to Cloud Build.mp46.71MB
  • Chapter 4 Cloud Run - Serverless and Containerized Applications/010. Lab - Python Application Deployment Using Cloud Build.mp438.12MB
  • Chapter 4 Cloud Run - Serverless and Containerized Applications/011. Lab - Continuous Deployment Using Cloud Build and GitHub.mp444.42MB
  • Chapter 5 Google App Engine - For Serverless Applications/001. Introduction to App Engine.mp43.77MB
  • Chapter 5 Google App Engine - For Serverless Applications/002. App Engine - Different Environments.mp43.17MB
  • Chapter 5 Google App Engine - For Serverless Applications/003. Lab - Deploy Python Application to App Engine - Part 1.mp417.11MB
  • Chapter 5 Google App Engine - For Serverless Applications/004. Lab - Deploy Python Application to App Engine - Part 2.mp422.16MB
  • Chapter 5 Google App Engine - For Serverless Applications/005. Lab - Traffic Splitting in App Engine.mp414.18MB
  • Chapter 5 Google App Engine - For Serverless Applications/006. Lab - Deploy Python - BigQuery Application.mp426.62MB
  • Chapter 5 Google App Engine - For Serverless Applications/007. Caching and Its Use Cases.mp410.92MB
  • Chapter 5 Google App Engine - For Serverless Applications/008. Lab - Implement Caching Mechanism in Python Application - Part 1.mp443.71MB
  • Chapter 5 Google App Engine - For Serverless Applications/009. Lab - Implement Caching Mechanism in Python Application - Part 2.mp412.39MB
  • Chapter 5 Google App Engine - For Serverless Applications/010. Lab - Assignment Implement Caching.mp412.15MB
  • Chapter 5 Google App Engine - For Serverless Applications/011. Lab - Python App Deployment in a Flexible Environment.mp418.82MB
  • Chapter 5 Google App Engine - For Serverless Applications/012. Lab - Scalability and Instance Types in App Engine.mp436.94MB
  • Chapter 6 Cloud Functions - Serverless and Event-Driven Applications/001. Introduction.mp48.56MB
  • Chapter 6 Cloud Functions - Serverless and Event-Driven Applications/002. Lab - Deploy Python Application Using Cloud Storage Triggers.mp452.22MB
  • Chapter 6 Cloud Functions - Serverless and Event-Driven Applications/003. Lab - Deploy Python Application Using PubSub Triggers.mp416.87MB
  • Chapter 6 Cloud Functions - Serverless and Event-Driven Applications/004. Lab - Deploy Python Application Using HTTP Triggers.mp414.98MB
  • Chapter 6 Cloud Functions - Serverless and Event-Driven Applications/005. Introduction to Cloud Datastore.mp46.92MB
  • Chapter 6 Cloud Functions - Serverless and Event-Driven Applications/006. Overview Product Wishlist Use Case.mp45.74MB
  • Chapter 6 Cloud Functions - Serverless and Event-Driven Applications/007. Lab – Use Case Deployment - Part-1.mp445.03MB
  • Chapter 6 Cloud Functions - Serverless and Event-Driven Applications/008. Lab – Use Case Deployment - Part-2.mp424.18MB
  • Chapter 7 Data Science Models with Google App Engine/001. Introduction to ML Model Lifecycle.mp49.25MB
  • Chapter 7 Data Science Models with Google App Engine/002. Overview - Problem Statement.mp47.51MB
  • Chapter 7 Data Science Models with Google App Engine/003. Lab - Deploy Training Code to App Engine.mp451.43MB
  • Chapter 7 Data Science Models with Google App Engine/004. Lab - Deploy Model Serving Code to App Engine.mp426.64MB
  • Chapter 7 Data Science Models with Google App Engine/005. Overview - New Use Case.mp45.25MB
  • Chapter 7 Data Science Models with Google App Engine/006. Lab - Data Validation Using App Engine.mp438.05MB
  • Chapter 7 Data Science Models with Google App Engine/007. Lab - Workflow Template Introduction.mp426.37MB
  • Chapter 7 Data Science Models with Google App Engine/008. Lab - Final Solution Deployment Using Workflow and App Engine.mp460.07MB
  • Chapter 8 Dataproc Serverless PySpark/001. Introduction.mp47.86MB
  • Chapter 8 Dataproc Serverless PySpark/002. PySpark Serverless Autoscaling Properties.mp46.83MB
  • Chapter 8 Dataproc Serverless PySpark/003. Persistent History Cluster.mp428.33MB
  • Chapter 8 Dataproc Serverless PySpark/004. Lab - Develop and Submit PySpark Job.mp435.26MB
  • Chapter 8 Dataproc Serverless PySpark/005. Lab - Monitoring and Spark UI.mp418.35MB
  • Chapter 8 Dataproc Serverless PySpark/006. Introduction to Airflow.mp415.07MB
  • Chapter 8 Dataproc Serverless PySpark/007. Lab - Airflow with Serverless PySpark.mp453.06MB
  • Chapter 8 Dataproc Serverless PySpark/008. Wrap Up.mp44.8MB
  • Chapter 9 Vertex AI - Machine Learning Framework/001. Introduction.mp46.45MB
  • Chapter 9 Vertex AI - Machine Learning Framework/002. Overview – Vertex AI UI.mp47.35MB
  • Chapter 9 Vertex AI - Machine Learning Framework/003. Lab - Custom Model Training Using Web Console.mp456.92MB
  • Chapter 9 Vertex AI - Machine Learning Framework/004. Lab - Custom Model Training Using SDK and Model Registries.mp441.47MB
  • Chapter 9 Vertex AI - Machine Learning Framework/005. Lab - Model Endpoint Deployment.mp47.73MB
  • Chapter 9 Vertex AI - Machine Learning Framework/006. Lab - Model Training Flow Using Python SDK.mp416.08MB
  • Chapter 9 Vertex AI - Machine Learning Framework/007. Lab - Model Deployment Flow Using Python SDK.mp460.28MB
  • Chapter 9 Vertex AI - Machine Learning Framework/008. Lab - Model Serving Using Endpoint with Python SDK.mp434.03MB
  • Chapter 9 Vertex AI - Machine Learning Framework/009. Introduction to Kubeflow.mp412.89MB
  • Chapter 9 Vertex AI - Machine Learning Framework/010. Lab - Code Walkthrough Using Kubeflow and Python.mp440.29MB
  • Chapter 9 Vertex AI - Machine Learning Framework/011. Lab - Pipeline Execution in Kubeflow.mp430.17MB
  • Chapter 9 Vertex AI - Machine Learning Framework/012. Lab - Final Pipeline Visualization Using Vertex UI and Walkthrough.mp411.17MB
  • Chapter 9 Vertex AI - Machine Learning Framework/013. Lab - Add Model Evaluation Step in Kubeflow before Deployment.mp435.94MB
  • Chapter 9 Vertex AI - Machine Learning Framework/014. Lab - Reusing Configuration Files for Pipeline Execution and Training.mp427.78MB
  • Chapter 9 Vertex AI - Machine Learning Framework/015. Lab - Assignment Use Case - Fetch Data from BigQuery.mp47.23MB
  • Chapter 9 Vertex AI - Machine Learning Framework/016. Wrap Up.mp46.15MB