本站已收录 番号和无损神作磁力链接/BT种子 

[DesireCourse.Net] Udemy - Credit Risk Modeling in Python 2020

种子简介

种子名称: [DesireCourse.Net] Udemy - Credit Risk Modeling in Python 2020
文件类型: 视频
文件数目: 62个文件
文件大小: 3.16 GB
收录时间: 2024-10-27 12:02
已经下载: 3
资源热度: 68
最近下载: 2024-11-27 02:32

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:5829dd7a8bcad74b4984be750f43f0eae32388f0&dn=[DesireCourse.Net] Udemy - Credit Risk Modeling in Python 2020 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[DesireCourse.Net] Udemy - Credit Risk Modeling in Python 2020.torrent
  • 1. Introduction/1. What does the course cover.mp472.92MB
  • 1. Introduction/10. Different facility types (asset classes) and credit risk modeling approaches.mp4104.46MB
  • 1. Introduction/2. What is credit risk and why is it important.mp458.17MB
  • 1. Introduction/4. Expected loss (EL) and its components PD, LGD and EAD.mp447.96MB
  • 1. Introduction/6. Capital adequacy, regulations, and the Basel II accord.mp451.04MB
  • 1. Introduction/8. Basel II approaches SA, F-IRB, and A-IRB.mp4102.45MB
  • 10. LGD and EAD Models Preparing the data/1. LGD and EAD models independent variables..mp450.04MB
  • 10. LGD and EAD Models Preparing the data/3. LGD and EAD models dependent variables.mp440.31MB
  • 10. LGD and EAD Models Preparing the data/5. LGD and EAD models distribution of recovery rates and credit conversion factors.mp440.05MB
  • 11. LGD model/1. LGD model preparing the inputs.mp424.25MB
  • 11. LGD model/10. LGD model combining stage 1 and stage 2.mp423.97MB
  • 11. LGD model/2. LGD model testing the model.mp442.68MB
  • 11. LGD model/4. LGD model estimating the accuracy of the model.mp434.84MB
  • 11. LGD model/5. LGD model saving the model.mp423.83MB
  • 11. LGD model/6. LGD model stage 2 – linear regression.mp436.07MB
  • 11. LGD model/8. LGD model stage 2 – linear regression evaluation.mp426.81MB
  • 12. EAD model/1. EAD model estimation and interpretation.mp448.02MB
  • 12. EAD model/3. EAD model validation.mp429.9MB
  • 13. Calculating expected loss/1. Calculating expected loss.mp4126.7MB
  • 2. Setting up the working environment/1. Setting up the environment - Do not skip, please!.mp46MB
  • 2. Setting up the working environment/2. Why Python and why Jupyter.mp429.24MB
  • 2. Setting up the working environment/3. Installing Anaconda.mp429.26MB
  • 2. Setting up the working environment/4. Jupyter Dashboard - Part 1.mp411.58MB
  • 2. Setting up the working environment/5. Jupyter Dashboard - Part 2.mp423.93MB
  • 2. Setting up the working environment/6. Installing the sklearn package.mp49.65MB
  • 3. Dataset description/1. Our example consumer loans. A first look at the dataset.mp436.7MB
  • 3. Dataset description/3. Dependent variables and independent variables.mp465.89MB
  • 4. General preprocessing/1. Importing the data into Python.mp432.87MB
  • 4. General preprocessing/3. Preprocessing few continuous variables.mp483.7MB
  • 4. General preprocessing/6. Preprocessing few discrete variables.mp446.3MB
  • 4. General preprocessing/8. Check for missing values and clean.mp425.09MB
  • 5. PD Model Data Preparation/1. How is the PD model going to look like.mp437.59MB
  • 5. PD Model Data Preparation/11. Data preparation. An example.mp449.91MB
  • 5. PD Model Data Preparation/13. Data preparation. Preprocessing discrete variables automating calculations.mp443.73MB
  • 5. PD Model Data Preparation/15. Data preparation. Preprocessing discrete variables visualizing results.mp466.36MB
  • 5. PD Model Data Preparation/16. Data preparation. Preprocessing discrete variables creating dummies (Part 1).mp449.72MB
  • 5. PD Model Data Preparation/18. Data preparation. Preprocessing discrete variables creating dummies (Part 2).mp493.3MB
  • 5. PD Model Data Preparation/21. Data preparation. Preprocessing continuous variables Automating calculations.mp445.07MB
  • 5. PD Model Data Preparation/23. Data preparation. Preprocessing continuous variables creating dummies (Part 1).mp444.04MB
  • 5. PD Model Data Preparation/25. Data preparation. Preprocessing continuous variables creating dummies (Part 2).mp4111.79MB
  • 5. PD Model Data Preparation/28. Data preparation. Preprocessing continuous variables creating dummies (Part 3).mp4100.95MB
  • 5. PD Model Data Preparation/3. Dependent variable Good Bad (default) definition.mp438.98MB
  • 5. PD Model Data Preparation/31. Data preparation. Preprocessing the test dataset.mp429.96MB
  • 5. PD Model Data Preparation/5. Fine classing, weight of evidence, and coarse classing.mp455.34MB
  • 5. PD Model Data Preparation/7. Information value.mp444.71MB
  • 5. PD Model Data Preparation/9. Data preparation. Splitting data.mp459.39MB
  • 6. PD model estimation/1. The PD model. Logistic regression with dummy variables.mp460.52MB
  • 6. PD model estimation/3. Loading the data and selecting the features.mp443.27MB
  • 6. PD model estimation/4. PD model estimation.mp424.92MB
  • 6. PD model estimation/5. Build a logistic regression model with p-values.mp4102.46MB
  • 6. PD model estimation/7. Interpreting the coefficients in the PD model.mp435.24MB
  • 7. PD model validation/1. Out-of-sample validation (test).mp452.43MB
  • 7. PD model validation/3. Evaluation of model performance accuracy and area under the curve (AUC).mp475.9MB
  • 7. PD model validation/5. Evaluation of model performance Gini and Kolmogorov-Smirnov.mp469.87MB
  • 8. Applying the PD Model for decision making/1. Calculating probability of default for a single customer.mp439.75MB
  • 8. Applying the PD Model for decision making/2. Creating a scorecard.mp497.45MB
  • 8. Applying the PD Model for decision making/4. Calculating credit score.mp441.15MB
  • 8. Applying the PD Model for decision making/6. From credit score to PD.mp423.21MB
  • 8. Applying the PD Model for decision making/8. Setting cut-offs.mp476.03MB
  • 9. PD model monitoring/1. PD model monitoring via assessing population stability.mp439.04MB
  • 9. PD model monitoring/3. Population stability index preprocessing.mp4105.26MB
  • 9. PD model monitoring/4. Population stability index calculation and interpretation.mp491.65MB