本站已收录 番号和无损神作磁力链接/BT种子 

[FreeCoursesOnline.Me] [Packtpub.Com] Building Machine Learning Systems with TensorFlow - [FCO]

种子简介

种子名称: [FreeCoursesOnline.Me] [Packtpub.Com] Building Machine Learning Systems with TensorFlow - [FCO]
文件类型: 视频
文件数目: 42个文件
文件大小: 591.66 MB
收录时间: 2019-4-30 14:53
已经下载: 3
资源热度: 198
最近下载: 2024-11-19 18:15

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:5bbdee8f38374cd9b9b92e4dda91d66d5889aae6&dn=[FreeCoursesOnline.Me] [Packtpub.Com] Building Machine Learning Systems with TensorFlow - [FCO] 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[FreeCoursesOnline.Me] [Packtpub.Com] Building Machine Learning Systems with TensorFlow - [FCO].torrent
  • Chapter 1 - Exploring and Transforming data/01. The Course Overview.mp418.55MB
  • Chapter 1 - Exploring and Transforming data/02. TensorFlow's Main Data Structure Tensors.mp427.13MB
  • Chapter 1 - Exploring and Transforming data/03. Handling the Computing Workflow TensorFlow's Data Flow Graph.mp416.2MB
  • Chapter 1 - Exploring and Transforming data/04. Basic Tensor Methods.mp436.91MB
  • Chapter 1 - Exploring and Transforming data/05. How TensorBoard Works.mp424.56MB
  • Chapter 1 - Exploring and Transforming data/06. Reading Information from Disk.mp421.8MB
  • Chapter 2 - Clustering/07. Learning from Data Unsupervised Learing.mp44.63MB
  • Chapter 2 - Clustering/08. Mechanics of k-Means.mp45.81MB
  • Chapter 2 - Clustering/09. k-Nearest Neighbor.mp418.88MB
  • Chapter 2 - Clustering/10. Project 1 k-Means Clustering on Synthetic Datasetsets.mp419.49MB
  • Chapter 2 - Clustering/11. Project 2 Nearest Neighbor on Synthetic Datasets.mp49.92MB
  • Chapter 3 - Linear Regression/12. Univariate Linear Modelling Function.mp48.77MB
  • Chapter 3 - Linear Regression/13. Optimizer Methods in TensorFlow The Train Module.mp45.53MB
  • Chapter 3 - Linear Regression/14. Univariate Linear Regression.mp425.25MB
  • Chapter 3 - Linear Regression/15. Multivariate Linear Regression.mp421.52MB
  • Chapter 4 - Logistic Regression/16. Logistic Function Predecessor The Logit Functions.mp46.9MB
  • Chapter 4 - Logistic Regression/17. The Logistic Function.mp49.58MB
  • Chapter 4 - Logistic Regression/18. Univariate Logistic Regression.mp431.62MB
  • Chapter 4 - Logistic Regression/19. Univariate Logistic Regression with keras.mp412.47MB
  • Chapter 5 - Simple FeedForward Neural Networks/20. Preliminary Concepts.mp413.36MB
  • Chapter 5 - Simple FeedForward Neural Networks/21. First Project Non-Linear Synthetic Function Regression.mp413.63MB
  • Chapter 5 - Simple FeedForward Neural Networks/22. Second Project Modeling Cars Fuel Efficiency with Non-Linear.mp415.6MB
  • Chapter 5 - Simple FeedForward Neural Networks/23. Third Project Learning to Classify Wines Multiclass Classification.mp412.61MB
  • Chapter 6 - Convolutional Neural Networks/24. Origin of Convolutional Neural Networks.mp45.4MB
  • Chapter 6 - Convolutional Neural Networks/25. Applying Convolution in TensorFlow.mp417.9MB
  • Chapter 6 - Convolutional Neural Networks/26. Subsampling Operation Pooling.mp410.85MB
  • Chapter 6 - Convolutional Neural Networks/27. Improving Efficiency Dropout Operation.mp46.17MB
  • Chapter 6 - Convolutional Neural Networks/28. Convolutional Type Layer Building Methods.mp42.9MB
  • Chapter 6 - Convolutional Neural Networks/29. MNIST Digit Classification.mp417.87MB
  • Chapter 6 - Convolutional Neural Networks/30. Image Classification with the CIFAR10 Dataset.mp412.92MB
  • Chapter 7 - Recurrent Neural Networks and LSTM/31. Recurrent Neural Networks.mp46.48MB
  • Chapter 7 - Recurrent Neural Networks and LSTM/32. A Fundamental Component Gate Operation and Its Steps.mp47.07MB
  • Chapter 7 - Recurrent Neural Networks and LSTM/33. TensorFlow LSTM Useful Classes and Methods.mp43.05MB
  • Chapter 7 - Recurrent Neural Networks and LSTM/34. Univariate Time Series Prediction with Energy Consumption Data.mp413.81MB
  • Chapter 7 - Recurrent Neural Networks and LSTM/35. Writing Music a la Bach.mp444.93MB
  • Chapter 8 - Deep Neural Networks/36. Deep Neural Network Definition and Architectures Through Time.mp44.87MB
  • Chapter 8 - Deep Neural Networks/37. Alexnet.mp49.77MB
  • Chapter 8 - Deep Neural Networks/38. Inception V3.mp41.85MB
  • Chapter 8 - Deep Neural Networks/39. Residual Networks (ResNet).mp43.26MB
  • Chapter 8 - Deep Neural Networks/40. Painting with Style VGG Style Transfer.mp415.43MB
  • Chapter 9 - Library Installation And Additional Tips/41. Windows Installation.mp412.74MB
  • Chapter 9 - Library Installation And Additional Tips/42. mac OS Installation.mp413.66MB