本站已收录 番号和无损神作磁力链接/BT种子 

[Manning] Machine learning bookcamp (hevc) (2021) [EN]

种子简介

种子名称: [Manning] Machine learning bookcamp (hevc) (2021) [EN]
文件类型: 视频
文件数目: 57个文件
文件大小: 286.19 MB
收录时间: 2023-8-25 20:19
已经下载: 3
资源热度: 126
最近下载: 2025-1-8 20:05

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:63ab46b6e621e43ea1b690108b1b949229fd4c42&dn=[Manning] Machine learning bookcamp (hevc) (2021) [EN] 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[Manning] Machine learning bookcamp (hevc) (2021) [EN].torrent
  • 1 - Ch1 Introduction to machine learning.m4v6.65MB
  • 2 - Ch1 When machine learning isn’t helpful.m4v6.47MB
  • 3 - Ch1 Evaluation.m4v6.02MB
  • 4 - Ch2 Machine learning for regression.m4v3.84MB
  • 5 - Ch2 Exploratory data analysis.m4v4.52MB
  • 6 - Ch2 Target variable analysis.m4v4.87MB
  • 7 - Ch2 Machine learning for regression - again.m4v5.36MB
  • 8 - Ch2 Linear regression.m4v4.77MB
  • 9 - Ch2 Predicting the price.m4v5.24MB
  • 10 - Ch2 Validating the model.m4v6.71MB
  • 11 - Ch2 Regularization.m4v4.04MB
  • 12 - Ch2 Using the model.m4v3.69MB
  • 13 - Ch3 Machine learning for classification.m4v6.26MB
  • 14 - Ch3 Initial data preparation.m4v5.3MB
  • 15 - Ch3 Feature importance, Part 1.m4v5.44MB
  • 16 - Ch3 Feature importance, Part 2.m4v3.95MB
  • 17 - Ch3 Feature engineering.m4v4.27MB
  • 18 - Ch3 Machine learning for classification.m4v3.22MB
  • 19 - Ch3 Training logistic regression.m4v5.17MB
  • 20 - Ch3 Model interpretation.m4v6.46MB
  • 21 - Ch3 Using the model.m4v6.21MB
  • 22 - Ch4 Evaluation metrics for classification.m4v5.6MB
  • 23 - Ch4 Confusion table.m4v5.76MB
  • 24 - Ch4 Precision and recall.m4v3.16MB
  • 25 - Ch4 ROC curve and AUC score.m4v6.83MB
  • 26 - Ch4 ROC Curve.m4v5.89MB
  • 27 - Ch4 Parameter tuning.m4v3.61MB
  • 28 - Ch4 Next steps.m4v5.67MB
  • 29 - Ch 5 Deploying machine learning models.m4v4.53MB
  • 30 - Ch5 Model serving.m4v5.4MB
  • 31 - Ch5 Managing dependencies.m4v4.15MB
  • 32 - Ch5 Docker.m4v3.63MB
  • 33 - Ch5 Deployment.m4v4.89MB
  • 34 - Ch6 Decision trees and ensemble learning.m4v3.07MB
  • 35 - Ch6 Data cleaning.m4v5.43MB
  • 36 - Ch6 Decision trees.m4v5.38MB
  • 37 - Ch6 Decision tree learning algorithm.m4v4.58MB
  • 38 - Ch6 Random forest.m4v4.29MB
  • 39 - Ch6 Gradient boosting.m4v3.51MB
  • 40 - Ch6 Parameter tuning for XGBoost.m4v6.24MB
  • 41 - Ch6 Next steps.m4v3.92MB
  • 42 - Ch7 Neural networks and deep learning.m4v5.8MB
  • 43 - Ch7 Convolutional neural networks.m4v3.21MB
  • 44 - Ch7 Internals of the model.m4v3.47MB
  • 45 - Ch7 Training the model.m4v3.71MB
  • 46 - Ch7 Training the model - again.m4v4.57MB
  • 47 - Ch7 Saving the model and checkpointing.m4v5.39MB
  • 48 - Ch7 Data augmentation.m4v4.58MB
  • 49 - Ch7 Using the model.m4v5.73MB
  • 50 - Ch8 Serverless deep learning.m4v6.59MB
  • 51 - Ch8 Preparing the Docker image.m4v6.73MB
  • 52 - Ch9 Serving models with Kubernetes and Kubeflow.m4v5.53MB
  • 53 - Ch9 Running TensorFlow Serving locally.m4v6.53MB
  • 54 - Ch9 Model deployment with Kubernetes.m4v6.35MB
  • 55 - Ch9 Deploying to Kubernetes.m4v5.51MB
  • 56 - Ch9 Model deployment with Kubeflow.m4v3.82MB
  • 57 - Ch9 KFServing transformers.m4v4.66MB