本站已收录 番号和无损神作磁力链接/BT种子 

[DesireCourse.Com] Udemy - Artificial Intelligence Masterclass

种子简介

种子名称: [DesireCourse.Com] Udemy - Artificial Intelligence Masterclass
文件类型: 视频
文件数目: 55个文件
文件大小: 4.55 GB
收录时间: 2019-6-22 22:04
已经下载: 3
资源热度: 115
最近下载: 2025-1-5 11:29

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:63dda960206c06f8e234022d2b8161d58e8602d1&dn=[DesireCourse.Com] Udemy - Artificial Intelligence Masterclass 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[DesireCourse.Com] Udemy - Artificial Intelligence Masterclass.torrent
  • 1. Introduction/1. Introduction + Course Structure + Demo.mp4156.75MB
  • 1. Introduction/2. Your Three Best Resources.mp4143.27MB
  • 10. Step 9 - Reinforcement Learning/2. What is Reinforcement Learning.mp468.59MB
  • 10. Step 9 - Reinforcement Learning/3. A Pseudo Implementation of Reinforcement Learning for the Full World Model.mp4154.25MB
  • 2. Step 1 - Artificial Neural Network/2. Plan of Attack.mp411.86MB
  • 2. Step 1 - Artificial Neural Network/3. The Neuron.mp498.79MB
  • 2. Step 1 - Artificial Neural Network/4. The Activation Function.mp445.35MB
  • 2. Step 1 - Artificial Neural Network/5. How do Neural Networks work.mp481.94MB
  • 2. Step 1 - Artificial Neural Network/6. How do Neural Networks learn.mp4112.12MB
  • 2. Step 1 - Artificial Neural Network/7. Gradient Descent.mp460.62MB
  • 2. Step 1 - Artificial Neural Network/8. Stochastic Gradient Descent.mp467.3MB
  • 2. Step 1 - Artificial Neural Network/9. Backpropagation.mp443.15MB
  • 3. Step 2 - Convolutional Neural Network/10. Softmax & Cross-Entropy.mp4117.97MB
  • 3. Step 2 - Convolutional Neural Network/2. Plan of Attack.mp415.81MB
  • 3. Step 2 - Convolutional Neural Network/3. What are Convolutional Neural Networks.mp4107.97MB
  • 3. Step 2 - Convolutional Neural Network/4. Step 1 - The Convolution Operation.mp497.93MB
  • 3. Step 2 - Convolutional Neural Network/5. Step 1 Bis - The ReLU Layer.mp453.45MB
  • 3. Step 2 - Convolutional Neural Network/6. Step 2 - Pooling.mp4140.17MB
  • 3. Step 2 - Convolutional Neural Network/7. Step 3 - Flattening.mp47.95MB
  • 3. Step 2 - Convolutional Neural Network/8. Step 4 - Full Connection.mp4194.27MB
  • 3. Step 2 - Convolutional Neural Network/9. Summary.mp430.33MB
  • 4. Step 3 - AutoEncoder/10. Stacked AutoEncoders.mp416.44MB
  • 4. Step 3 - AutoEncoder/11. Deep AutoEncoders.mp411.97MB
  • 4. Step 3 - AutoEncoder/2. Plan of Attack.mp411.84MB
  • 4. Step 3 - AutoEncoder/3. What are AutoEncoders.mp494.61MB
  • 4. Step 3 - AutoEncoder/4. A Note on Biases.mp48.61MB
  • 4. Step 3 - AutoEncoder/5. Training an AutoEncoder.mp450.3MB
  • 4. Step 3 - AutoEncoder/6. Overcomplete Hidden Layers.mp428.06MB
  • 4. Step 3 - AutoEncoder/7. Sparse AutoEncoders.mp457.45MB
  • 4. Step 3 - AutoEncoder/8. Denoising AutoEncoders.mp424.1MB
  • 4. Step 3 - AutoEncoder/9. Contractive AutoEncoders.mp420.56MB
  • 5. Step 4 - Variational AutoEncoder/2. Introduction to the VAE.mp4103.68MB
  • 5. Step 4 - Variational AutoEncoder/3. Variational AutoEncoders.mp426.31MB
  • 5. Step 4 - Variational AutoEncoder/4. Reparameterization Trick.mp426.4MB
  • 6. Step 5 - Implementing the CNN-VAE/2. Introduction to Step 5.mp458.86MB
  • 6. Step 5 - Implementing the CNN-VAE/3. Initializing all the parameters and variables of the CNN-VAE class.mp471.72MB
  • 6. Step 5 - Implementing the CNN-VAE/4. Building the Encoder part of the VAE.mp4133.65MB
  • 6. Step 5 - Implementing the CNN-VAE/5. Building the V part of the VAE.mp480.33MB
  • 6. Step 5 - Implementing the CNN-VAE/6. Building the Decoder part of the VAE.mp492.89MB
  • 6. Step 5 - Implementing the CNN-VAE/7. Implementing the Training operations.mp4186.98MB
  • 7. Step 6 - Recurrent Neural Network/2. Plan of Attack.mp410.5MB
  • 7. Step 6 - Recurrent Neural Network/3. What are Recurrent Neural Networks.mp4121.1MB
  • 7. Step 6 - Recurrent Neural Network/4. The Vanishing Gradient Problem.mp4111.17MB
  • 7. Step 6 - Recurrent Neural Network/5. LSTMs.mp4136.52MB
  • 7. Step 6 - Recurrent Neural Network/6. LSTM Practical Intuition.mp4187.42MB
  • 7. Step 6 - Recurrent Neural Network/7. LSTM Variations.mp420.13MB
  • 9. Step 8 - Implementing the MDN-RNN/10. Implementing the Training operations (Part 2).mp4162.89MB
  • 9. Step 8 - Implementing the MDN-RNN/2. Initializing all the parameters and variables of the MDN-RNN class.mp499.49MB
  • 9. Step 8 - Implementing the MDN-RNN/3. Building the RNN - Gathering the parameters.mp476.58MB
  • 9. Step 8 - Implementing the MDN-RNN/4. Building the RNN - Creating an LSTM cell with Dropout.mp4127.16MB
  • 9. Step 8 - Implementing the MDN-RNN/5. Building the RNN - Setting up the Input, Target, and Output of the RNN.mp4131.12MB
  • 9. Step 8 - Implementing the MDN-RNN/6. Building the RNN - Getting the Deterministic Output of the RNN.mp4125.5MB
  • 9. Step 8 - Implementing the MDN-RNN/7. Building the MDN - Getting the Input, Hidden Layer and Output of the MDN.mp4146.97MB
  • 9. Step 8 - Implementing the MDN-RNN/8. Building the MDN - Getting the MDN parameters.mp4109.45MB
  • 9. Step 8 - Implementing the MDN-RNN/9. Implementing the Training operations (Part 1).mp4177.45MB