种子简介
种子名称:
Neural Networks for Machine Learning
文件类型:
文件数目:
78个文件
文件大小:
919.67 MB
收录时间:
2013-12-8 21:13
已经下载:
3次
资源热度:
226
最近下载:
2025-1-10 12:35
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:65EC8A88B2C48329BD11761A87F0EEF0BFCA60ED&dn=Neural Networks for Machine Learning
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
Neural Networks for Machine Learning.torrent
0101 Why do we need machine learning_.mp415.05MB
0102 What are neural networks_.mp49.76MB
0103 Some simple models of neurons.mp49.26MB
0104 A simple example of learning.mp46.57MB
0105 Three types of learning.mp48.96MB
0201 Types of neural network architectures.mp48.78MB
0202 Perceptrons_ The first generation of neural networks.mp49.78MB
0203 A geometrical view of perceptrons.mp47.32MB
0204 Why the learning works.mp45.9MB
0205 What perceptrons can_t do.mp416.57MB
0301 Learning the weights of a linear neuron.mp413.52MB
0302 The error surface for a linear neuron.mp45.89MB
0303 Learning the weights of a logistic output neuron.mp44.37MB
0304 The backpropagation algorithm.mp413.35MB
0305 Using the derivatives computed by backpropagation.mp411.15MB
0401 Learning to predict the next word.mp414.28MB
0402 A brief diversion into cognitive science.mp45.31MB
0403 Another diversion_ The softmax output function.mp48.03MB
0404 Neuro-probabilistic language models.mp48.93MB
0405 Ways to deal with the large number of possible outputs.mp414.26MB
0501 Why object recognition is difficult.mp45.37MB
0502 Achieving viewpoint invariance.mp46.89MB
0503 Convolutional nets for digit recognition.mp418.46MB
0504 Convolutional nets for object recognition.mp423.03MB
0601 Overview of mini-batch gradient descent.mp49.6MB
0602 A bag of tricks for mini-batch gradient descent.mp414.9MB
0603 The momentum method.mp49.74MB
0604 Adaptive learning rates for each connection.mp46.63MB
0605 Rmsprop_ Divide the gradient by a running average of its recent magnitude.mp415.12MB
0701 Modeling sequences_ A brief overview.mp420.13MB
0702 Training RNNs with back propagation.mp47.33MB
0703 A toy example of training an RNN.mp47.24MB
0704 Why it is difficult to train an RNN.mp48.89MB
0705 Long-term Short-term-memory.mp410.23MB
0801 A brief overview of Hessian Free optimization.mp416.24MB
0802 Modeling character strings with multiplicative connections.mp416.56MB
0803 Learning to predict the next character using HF.mp413.92MB
0804 Echo State Networks.mp411.28MB
0901 Overview of ways to improve generalization.mp413.57MB
0902 Limiting the size of the weights.mp47.36MB
0903 Using noise as a regularizer.mp48.48MB
0904 Introduction to the full Bayesian approach.mp412MB
0905 The Bayesian interpretation of weight decay.mp412.27MB
0906 MacKay_s quick and dirty method of setting weight costs.mp44.37MB
1001 Why it helps to combine models.mp415.12MB
1002 Mixtures of Experts.mp414.98MB
1003 The idea of full Bayesian learning.mp48.39MB
1004 Making full Bayesian learning practical.mp48.13MB
1005 Dropout.mp49.69MB
1101 Hopfield Nets.mp414.65MB
1102 Dealing with spurious minima.mp412.77MB
1103 Hopfield nets with hidden units.mp411.31MB
1104 Using stochastic units to improv search.mp411.76MB
1105 How a Boltzmann machine models data.mp413.28MB
1201 Boltzmann machine learning.mp414.03MB
1202 OPTIONAL VIDEO_ More efficient ways to get the statistics.mp416.93MB
1203 Restricted Boltzmann Machines.mp412.68MB
1204 An example of RBM learning.mp48.71MB
1205 RBMs for collaborative filtering.mp49.53MB
1301 The ups and downs of back propagation.mp411.83MB
1302 Belief Nets.mp414.86MB
1303 Learning sigmoid belief nets.mp414.19MB
1304 The wake-sleep algorithm.mp415.68MB
1401 Learning layers of features by stacking RBMs.mp420.07MB
1402 Discriminative learning for DBNs.mp411.29MB
1403 What happens during discriminative fine-tuning_.mp410.17MB
1404 Modeling real-valued data with an RBM.mp411.2MB
1405 OPTIONAL VIDEO_ RBMs are infinite sigmoid belief nets.mp419.44MB
1501 From PCA to autoencoders.mp49.68MB
1502 Deep auto encoders.mp44.92MB
1503 Deep auto encoders for document retrieval.mp410.25MB
1504 Semantic Hashing.mp410.97MB
1505 Learning binary codes for image retrieval.mp411.51MB
1506 Shallow autoencoders for pre-training.mp48.25MB
1601 OPTIONAL_ Learning a joint model of images and captions.mp413.83MB
1602 OPTIONAL_ Hierarchical Coordinate Frames.mp411.16MB
1603 OPTIONAL_ Bayesian optimization of hyper-parameters.mp415.8MB
1604 OPTIONAL_ The fog of progress.mp42.78MB