本站已收录 番号和无损神作磁力链接/BT种子 

[Udemy] Automatic Number Plate Recognition, OCR Web App in Python (04.2021)

种子简介

种子名称: [Udemy] Automatic Number Plate Recognition, OCR Web App in Python (04.2021)
文件类型: 视频
文件数目: 39个文件
文件大小: 1.6 GB
收录时间: 2021-12-26 07:57
已经下载: 3
资源热度: 331
最近下载: 2025-1-27 09:14

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:713f6373aac8fee0ea0abd8ef657f021c2739b3e&dn=[Udemy] Automatic Number Plate Recognition, OCR Web App in Python (04.2021) 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[Udemy] Automatic Number Plate Recognition, OCR Web App in Python (04.2021).torrent
  • 1. Introduction/1. Project Architecture.mp412.49MB
  • 2. Labeling/1. Get the Data.mp418.58MB
  • 2. Labeling/2. Download Image Annotation Tool.mp422.78MB
  • 2. Labeling/3. Install Dependencies.mp440.33MB
  • 2. Labeling/4. Label Images.mp432.08MB
  • 2. Labeling/5. XML to CSV.mp481.86MB
  • 3. Data Processing/1. Read Data.mp461.14MB
  • 3. Data Processing/2. Verify Labeled Data.mp448.62MB
  • 3. Data Processing/3. Data Preprocessing.mp483.36MB
  • 3. Data Processing/4. Split train and test set.mp427.4MB
  • 4. Deep Learning for Object Detection/1. Get Transfer Learning from TensorFlow 2.x.mp417.43MB
  • 4. Deep Learning for Object Detection/2. InceptionResnet V2 model building.mp445MB
  • 4. Deep Learning for Object Detection/3. Defining Inputs and Outputs.mp414.45MB
  • 4. Deep Learning for Object Detection/4. Compiling Model.mp423.94MB
  • 4. Deep Learning for Object Detection/5. InceptionResnet V2 Training.mp421.48MB
  • 4. Deep Learning for Object Detection/6. InceptionResnet V2 Training - Part 2.mp424.6MB
  • 4. Deep Learning for Object Detection/7. Save Deep Learning Model.mp424.07MB
  • 4. Deep Learning for Object Detection/8. Tensorboard.mp428.23MB
  • 5. Pipeline Object Detection Model/1. Make Predictions.mp474.93MB
  • 5. Pipeline Object Detection Model/2. Make Predictions part2.mp430.03MB
  • 5. Pipeline Object Detection Model/3. De-normalize the Output.mp430.59MB
  • 5. Pipeline Object Detection Model/4. Bounding Box.mp439.08MB
  • 5. Pipeline Object Detection Model/5. Create Pipeline.mp455.4MB
  • 6. Optical Character Recognition (OCR)/1. Install Tesseract.mp447.8MB
  • 6. Optical Character Recognition (OCR)/2. Install Pytesseract.mp412.98MB
  • 6. Optical Character Recognition (OCR)/3. Exrtract Number Plate text from Image.mp467.37MB
  • 7. Flask App/1. Install Visual Studio Code.mp438.79MB
  • 7. Flask App/2. First Flask App.mp438.2MB
  • 7. Flask App/3. Render HTML Template.mp447.65MB
  • 7. Flask App/4. Import Boostrap.mp425.69MB
  • 8. Number Plate Web App/1. Create Web App.mp425.71MB
  • 8. Number Plate Web App/2. Footer.mp412.76MB
  • 8. Number Plate Web App/3. Template Inheritance.mp422.21MB
  • 8. Number Plate Web App/4. Upload Form in HTML.mp422.79MB
  • 8. Number Plate Web App/5. HTTP Method Upload File in Flask.mp456.66MB
  • 8. Number Plate Web App/6. Integrate Deep Learning Object Detection Model.mp4141.72MB
  • 8. Number Plate Web App/7. Integrate Number Plate Detection and OCR to Flask App.mp466.89MB
  • 8. Number Plate Web App/8. Display Output in HTML Page.mp478.17MB
  • 8. Number Plate Web App/9. Display Output in HTML Page part 2.mp471.25MB