本站已收录 番号和无损神作磁力链接/BT种子 

[FreeCoursesOnline.Me] MANNING - Machine Learning for Mere Mortals

种子简介

种子名称: [FreeCoursesOnline.Me] MANNING - Machine Learning for Mere Mortals
文件类型: 视频
文件数目: 66个文件
文件大小: 2.69 GB
收录时间: 2021-12-4 22:02
已经下载: 3
资源热度: 259
最近下载: 2025-1-12 15:31

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:801c8a91963034d9453043ad07eb54ca5d40987a&dn=[FreeCoursesOnline.Me] MANNING - Machine Learning for Mere Mortals 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[FreeCoursesOnline.Me] MANNING - Machine Learning for Mere Mortals.torrent
  • U01M01 The basics.mp434.68MB
  • U01M02 Machine Learning versus Artificial Intelligence.mp433.01MB
  • U01M03 Supervised learning.mp443.06MB
  • U01M04 Unsupervised learning.mp416.22MB
  • U01M05 Reinforcement learning.mp428.4MB
  • U01M06 A quick math refresher.mp411.02MB
  • U01M07 Slope of a line.mp445.1MB
  • U01M08 Scalars, vectors, and tensors.mp426.47MB
  • U01M09 Matrices and matrix arithmetic.mp413.44MB
  • U01M10 Set up your computing environment.mp41.83MB
  • U01M11 Install Python tools.mp411.18MB
  • U01M12 Create virtualenv environment.mp45.88MB
  • U01M13 Install Tensorflow.mp418.31MB
  • U01M14 The projects.mp410.06MB
  • U02M01 Supervised learning.mp422.32MB
  • U02M02 Trend lines.mp44.62MB
  • U02M03 Cost functions.mp43.8MB
  • U02M04 Minimizing cost functions.mp48.78MB
  • U02M05 Visualizing data.mp434.97MB
  • U02M06 Using linear regression to predict values.mp422.84MB
  • U02M07 More complicated functions.mp41.71MB
  • U02M08 Working with matrices.mp44.61MB
  • U02M09 Letting Tensorflow do the hard work.mp414.17MB
  • U03M01 More supervised learning.mp44.72MB
  • U03M02 What are features_.mp45.63MB
  • U03M03 What makes a good feature_.mp415.53MB
  • U03M04 Decision trees.mp410.58MB
  • U03M05 K-nearest neighbor.mp49.92MB
  • U03M06 Linear classification.mp47.89MB
  • U03M07 Making it work in Tensorflow.mp421.22MB
  • U03M08 Creating a spam filter.mp413.66MB
  • U03M09 Tools and data for email classification.mp436MB
  • U03M10 Classifying emails.mp49.15MB
  • U04M01 How clustering works.mp482.12MB
  • U04M02 Clustering algorithms.mp456.82MB
  • U04M03 Introducing k-means.mp456.87MB
  • U04M06 Assigning Points to a Centroid in K-means).mp434.33MB
  • U05M01 What are neural networks, and how do they work.mp468.7MB
  • U05M02 The Tensorflow Playground interface.mp414.04MB
  • U05M03 Adding nodes to use multiple models in the TensorFlow Playground.mp412.81MB
  • U05M04 What hidden layers are, and how to use them with TensorFlow Playground.mp443.92MB
  • U05M05 What is the activation function in a neural network_.mp435.82MB
  • U06M01 Using Neural Networks.mp456.56MB
  • U06M02 How encoding non-numeric data works.mp464.84MB
  • U06M03 One hot encoding.mp484.5MB
  • U06M04 How image recognition relates to a neural network.mp495.14MB
  • U07M01 Encoding and Representation.mp421.27MB
  • U07M02 Numeric representation of data.mp440.61MB
  • U07M03 Text representation of data.mp431.82MB
  • U07M04 Representation of image data.mp434.06MB
  • U07M05 Representation of audio data.mp428.39MB
  • U07M06 Analytics, stock prices, and other time series data.mp443.63MB
  • U07M07 Preparing data_ finding the data set.mp431.31MB
  • U07M08 Preparing data_ Features engineering.mp461.38MB
  • U07M09 Principal Component Analysis_ The mathematical way to determine features.mp423.11MB
  • U07M10 Feature selection.mp434.54MB
  • U07M11 Geometry of the data space and the curse of dimensionality.mp458.61MB
  • U08M01 The difference between an algorithm and a model.mp450.27MB
  • U08M02 Chaining together models.mp4146.62MB
  • U09M01 Improving performance in machine learning routines.mp489.81MB
  • U09M02 Using parallelization.mp457.25MB
  • U09M03 Outliers.mp4204.64MB
  • U09M05 What should we do with outliers_.mp4119.1MB
  • U09M06 Robustness and noise.mp440.25MB
  • U09M07 Overfitting.mp4104.22MB
  • U09M08 Regularization.mp4272.46MB