本站已收录 番号和无损神作磁力链接/BT种子 

[Tutorialsplanet.NET] Udemy -Projects in Machine Learning Beginner To Professional

种子简介

种子名称: [Tutorialsplanet.NET] Udemy -Projects in Machine Learning Beginner To Professional
文件类型: 视频
文件数目: 57个文件
文件大小: 4.23 GB
收录时间: 2019-11-25 11:10
已经下载: 3
资源热度: 175
最近下载: 2024-11-6 02:12

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:89c9a8c6f25a0a3da9ad16d71d4c84a524a31924&dn=[Tutorialsplanet.NET] Udemy -Projects in Machine Learning Beginner To Professional 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[Tutorialsplanet.NET] Udemy -Projects in Machine Learning Beginner To Professional.torrent
  • 1. An Introduction to Machine Learning/1. Introduction.mp41.71MB
  • 1. An Introduction to Machine Learning/2. What is Machine Learning.mp429.19MB
  • 1. An Introduction to Machine Learning/3. Types and Applications of ML.mp453.05MB
  • 1. An Introduction to Machine Learning/4. AI vs ML.mp422.88MB
  • 1. An Introduction to Machine Learning/5. Essential Math for ML and AI.mp435.79MB
  • 10. Project 5 Object Recognition/1. Intro.mp47.21MB
  • 10. Project 5 Object Recognition/2. Loading and Preprocessing the CIFAR10 Dataset.mp4180.54MB
  • 10. Project 5 Object Recognition/3. Building and Deploying the All-CNN Network Part 1.mp4205.6MB
  • 10. Project 5 Object Recognition/4. Building and Deploying the All-CNN Network Part 2.mp4170.79MB
  • 11. Project 6 Image Super Resolution/1. Intro.mp49.56MB
  • 11. Project 6 Image Super Resolution/2. Quality Metrics and Preprocessing Images.mp4258.79MB
  • 11. Project 6 Image Super Resolution/3. Image Super Resolution using Deep Learning.mp4357.57MB
  • 12. Project 7 Text Classification/1. Intro.mp45MB
  • 12. Project 7 Text Classification/2. Feature Engineering.mp4375.39MB
  • 12. Project 7 Text Classification/3. Deploying Sklearn Classifiers.mp4204.23MB
  • 13. Project 8 - KMeans/1. Intro.mp411.21MB
  • 13. Project 8 - KMeans/2. Preprocessing Images for Clustering.mp4230.86MB
  • 13. Project 8 - KMeans/3. Evaluation and Visualization.mp4209.48MB
  • 14. Project 9 PCA/1. Intro.mp43.69MB
  • 14. Project 9 PCA/2. The Elbow Method.mp4114.2MB
  • 14. Project 9 PCA/3. PCA Compression and Visualization.mp4185MB
  • 2. Supervised Learning - part 1/1. Introduction to Supervised Learning.mp425.47MB
  • 2. Supervised Learning - part 1/2. Linear Methods for Classification.mp434.14MB
  • 2. Supervised Learning - part 1/3. Linear Methods for Regression.mp427.01MB
  • 2. Supervised Learning - part 1/4. Support Vector Machines.mp435.79MB
  • 2. Supervised Learning - part 1/5. Basis Expansions.mp421.32MB
  • 2. Supervised Learning - part 1/6. Model Selection Procedures.mp426.93MB
  • 2. Supervised Learning - part 1/7. Bonus! Supervised Learning Project in Python Part 1.mp431.01MB
  • 2. Supervised Learning - part 1/8. Bonus! Supervised Learning Project in Python Part 2.mp436.22MB
  • 3. Unsupervised Learning/1. Introduction to Unsupervised Learning.mp431.78MB
  • 3. Unsupervised Learning/2. Association Rules.mp428.5MB
  • 3. Unsupervised Learning/3. Cluster Analysis.mp427.95MB
  • 3. Unsupervised Learning/4. Reinforcement Learning.mp420.96MB
  • 3. Unsupervised Learning/5. Bonus! KMeans Clustering Project.mp421.95MB
  • 4. Neural Networks/1. Introduction to Neural Networks.mp422.71MB
  • 4. Neural Networks/2. The Perceptron.mp417.12MB
  • 4. Neural Networks/3. The Backpropagation Algorithm.mp422.64MB
  • 4. Neural Networks/4. Training Procedures.mp424.04MB
  • 4. Neural Networks/5. Convolutional Neural Networks.mp432.04MB
  • 5. Real World Machine Learning/1. Introduction to Real World ML.mp425.58MB
  • 5. Real World Machine Learning/2. Choosing an Algorithm.mp419.14MB
  • 5. Real World Machine Learning/3. Design and Analysis of ML Experiments.mp419.79MB
  • 5. Real World Machine Learning/4. Common Software for ML.mp431.33MB
  • 6. Warmup Project/1. Setting up OpenAI Gym.mp430.12MB
  • 6. Warmup Project/2. Building and Training the Network Part 1.mp436.02MB
  • 6. Warmup Project/3. Building and Training the Network Part 2.mp463.34MB
  • 7. Project 1Board Game Review Prediction/1. Intro.mp47.55MB
  • 7. Project 1Board Game Review Prediction/2. Board Game Review Prediction - Building the Dataset Part 1.mp417.73MB
  • 7. Project 1Board Game Review Prediction/3. Board Game Review Prediction - Building the Dataset Part 2.mp435.5MB
  • 7. Project 1Board Game Review Prediction/4. Board Game Review Prediction - Training the Models.mp435.82MB
  • 8. Project 2 Credit Card Fraud Detection/1. Intro.mp47.57MB
  • 8. Project 2 Credit Card Fraud Detection/2. Credit Card Fraud Detection - The Dataset.mp437.57MB
  • 8. Project 2 Credit Card Fraud Detection/3. Credit Card Fraud Detection - The Algorithms.mp448.91MB
  • 9. Project 4 Intro to Natural Language Processing/1. Intro.mp416.95MB
  • 9. Project 4 Intro to Natural Language Processing/2. Tokenizing, Stop Words, and Stemming.mp4198.34MB
  • 9. Project 4 Intro to Natural Language Processing/3. Tagging, Chunking, and Named Entity Recognition.mp4323.06MB
  • 9. Project 4 Intro to Natural Language Processing/4. Text Classification.mp4216.93MB