本站已收录 番号和无损神作磁力链接/BT种子 

Packt Publishing - Deep Dive into Python Machine Learning

种子简介

种子名称: Packt Publishing - Deep Dive into Python Machine Learning
文件类型: 视频
文件数目: 187个文件
文件大小: 2.58 GB
收录时间: 2018-2-14 22:04
已经下载: 3
资源热度: 208
最近下载: 2025-1-1 19:45

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:8d48ebb15a1af945bf781071adb6be1aa5602953&dn=Packt Publishing - Deep Dive into Python Machine Learning 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

Packt Publishing - Deep Dive into Python Machine Learning.torrent
  • 01 - The Course Overview.mp414.93MB
  • 02 - Python Basic Syntax and Block Structure.mp422.54MB
  • 03 - Built-in Data Structures and Comprehensions.mp417.79MB
  • 04 - First-Class Functions and Classes.mp412.33MB
  • 05 - Extensive Standard Library.mp431.14MB
  • 06 - New in Python 3.5.mp421.01MB
  • 07 - Downloading and Installing Python.mp415.34MB
  • 08 - Using the Command-Line and the Interactive Shell.mp47.1MB
  • 09 - Installing Packages with pip.mp411.04MB
  • 10 - Finding Packages in the Python Package Index.mp421.78MB
  • 100 - Compressing an Image Using Vector Quantization.mp416.33MB
  • 101 - Building a Mean Shift Clustering.mp411.26MB
  • 102 - Grouping Data Using Agglomerative Clustering.mp413.54MB
  • 103 - Evaluating the Performance of Clustering Algorithms.mp412.74MB
  • 104 - Automatically Estimating the Number of Clusters Using DBSCAN.mp414.94MB
  • 105 - Finding Patterns in Stock Market Data.mp411.34MB
  • 106 - Building a Customer Segmentation Model.mp49.78MB
  • 107 - Building Function Composition for Data Processing.mp413.67MB
  • 108 - Building Machine Learning Pipelines.mp415.17MB
  • 109 - Finding the Nearest Neighbors.mp48.05MB
  • 11 - Creating an Empty Package.mp411.59MB
  • 110 - Constructing a k-nearest Neighbors Classifier.mp419.77MB
  • 111 - Constructing a k-nearest Neighbors Regressor.mp49.75MB
  • 112 - Computing the Euclidean Distance Score.mp49.21MB
  • 113 - Computing the Pearson Correlation Score.mp48.32MB
  • 114 - Finding Similar Users in a Dataset.mp46.89MB
  • 115 - Generating Movie Recommendations.mp410.2MB
  • 116 - Preprocessing Data Using Tokenization.mp412.67MB
  • 117 - Stemming Text Data.mp48.77MB
  • 118 - Converting Text to Its Base Form Using Lemmatization.mp48.25MB
  • 119 - Dividing Text Using Chunking.mp47.42MB
  • 12 - Adding Modules to the Package.mp47.99MB
  • 120 - Building a Bag-of-Words Model.mp411.71MB
  • 121 - Building a Text Classifier.mp417.97MB
  • 122 - Identifying the Gender.mp410MB
  • 123 - Analyzing the Sentiment of a Sentence.mp414.39MB
  • 124 - Identifying Patterns in Text Using Topic Modelling.mp419.76MB
  • 125 - Reading and Plotting Audio Data.mp49.35MB
  • 126 - Transforming Audio Signals into the Frequency Domain.mp49.32MB
  • 127 - Generating Audio Signals with Custom Parameters.mp47.64MB
  • 128 - Synthesizing Music.mp49.81MB
  • 129 - Extracting Frequency Domain Features.mp48.13MB
  • 13 - Importing One of the Package's Modules from Another.mp49.29MB
  • 130 - Building Hidden Markov Models.mp49.6MB
  • 131 - Building a Speech Recognizer.mp412.94MB
  • 132 - Transforming Data into the Time Series Format.mp413.23MB
  • 133 - Slicing Time Series Data.mp45.32MB
  • 134 - Operating on Time Series Data.mp46.79MB
  • 135 - Extracting Statistics from Time Series.mp410.76MB
  • 136 - Building Hidden Markov Models for Sequential Data.mp417.7MB
  • 137 - Building Conditional Random Fields for Sequential Text Data.mp419.05MB
  • 138 - Analyzing Stock Market Data with Hidden Markov Models.mp411.84MB
  • 139 - Operating on Images Using OpenCV-Python.mp416.06MB
  • 14 - Adding Static Data Files to the Package.mp44.54MB
  • 140 - Detecting Edges.mp413.63MB
  • 141 - Histogram Equalization.mp411.46MB
  • 142 - Detecting Corners and SIFT Feature Points.mp416.86MB
  • 143 - Building a Star Feature Detector.mp47.35MB
  • 144 - Creating Features Using Visual Codebook and Vector Quantization.mp419.96MB
  • 145 - Training an Image Classifier Using Extremely Random Forests.mp411.41MB
  • 146 - Building an object recognizer.mp47.72MB
  • 147 - Capturing and Processing Video from a Webcam.mp46.95MB
  • 148 - Building a Face Detector using Haar Cascades.mp411.01MB
  • 149 - Building Eye and Nose Detectors.mp48.23MB
  • 15 - PEP 8 and Writing Readable Code.mp423.79MB
  • 150 - Performing Principal Component Analysis.mp47.98MB
  • 151 - Performing Kernel Principal Component Analysis.mp48.42MB
  • 152 - Performing Blind Source Separation.mp410.05MB
  • 153 - Building a Face Recognizer Using a Local Binary Patterns Histogram.mp420.53MB
  • 154 - Building a Perceptron.mp49.19MB
  • 155 - Building a Single-Layer Neural Network.mp45.93MB
  • 156 - Building a deep neural network.mp49.15MB
  • 157 - Creating a Vector Quantizer.mp48.36MB
  • 158 - Building a Recurrent Neural Network for Sequential Data Analysis.mp410.18MB
  • 159 - Visualizing the Characters in an Optical Character Recognition Database.mp45.17MB
  • 16 - Using Version Control.mp416.75MB
  • 160 - Building an Optical Character Recognizer Using Neural Networks.mp410.37MB
  • 161 - Plotting 3D Scatter plots.mp48.03MB
  • 162 - Plotting Bubble Plots.mp43.66MB
  • 163 - Animating Bubble Plots.mp49.43MB
  • 164 - Drawing Pie Charts.mp45.57MB
  • 165 - Plotting Date-Formatted Time Series Data.mp45.96MB
  • 166 - Plotting Histograms.mp43.67MB
  • 167 - Visualizing Heat Maps.mp44MB
  • 168 - Animating Dynamic Signals.mp46.79MB
  • 169 - The Course Overview.mp417.84MB
  • 17 - Using venv to Create a Stable and Isolated Work Area.mp48.15MB
  • 170 - What Is Deep Learning.mp47.37MB
  • 171 - Open Source Libraries for Deep Learning.mp421.33MB
  • 172 - Deep Learning Hello World! Classifying the MNIST Data.mp434.69MB
  • 173 - Introduction to Backpropagation.mp49.32MB
  • 174 - Understanding Deep Learning with Theano.mp419.26MB
  • 175 - Optimizing a Simple Model in Pure Theano.mp433.58MB
  • 176 - Keras Behind the Scenes.mp424.43MB
  • 177 - Fully Connected or Dense Layers.mp421.89MB
  • 178 - Convolutional and Pooling Layers.mp425.35MB
  • 179 - Large Scale Datasets, ImageNet, and Very Deep Neural Networks.mp420.32MB
  • 18 - Getting the Most Out of docstrings 1 - PEP 257 and docutils.mp438.58MB
  • 180 - Loading Pre-trained Models with Theano.mp423.52MB
  • 181 - Reusing Pre-trained Models in New Applications.mp431.83MB
  • 182 - Theano for Loops – the scan Module.mp419.47MB
  • 183 - Recurrent Layers.mp424.84MB
  • 184 - Recurrent Versus Convolutional Layers.mp46.58MB
  • 185 - Recurrent Networks –Training a Sentiment Analysis Model for Text.mp429.72MB
  • 186 - Bonus Challenge – Automatic Image Captioning.mp421.25MB
  • 187 - Captioning TensorFlow – Google's Machine Learning Library.mp421.61MB
  • 19 - Getting the Most Out of docstrings 2 - doctest.mp47.42MB
  • 20 - Making a Package Executable via python -m.mp49.19MB
  • 21 - Handling Command-Line Arguments with argparse.mp412.23MB
  • 22 - Interacting with the User.mp48.64MB
  • 23 - Executing Other Programs with Subprocess.mp445.53MB
  • 24 - Using Shell Scripts or Batch Files to Run Our Programs.mp44.62MB
  • 25 - Using concurrent.futures.mp446.73MB
  • 26 - Using Multiprocessing.mp421.9MB
  • 27 - Understanding Why This Isn't Like Parallel Processing.mp417.4MB
  • 28 - Using the asyncio Event Loop and Coroutine Scheduler.mp413.35MB
  • 29 - Waiting for Data to Become Available.mp46.66MB
  • 30 - Synchronizing Multiple Tasks.mp413.32MB
  • 31 - Communicating Across the Network.mp411.34MB
  • 32 - Using Function Decorators.mp412.98MB
  • 33 - Function Annotations.mp413.61MB
  • 34 - Class Decorators.mp411.44MB
  • 35 - Metaclasses.mp49.83MB
  • 36 - Context Managers.mp411.35MB
  • 37 - Descriptors.mp419.63MB
  • 38 - Understanding the Principles of Unit Testing.mp48.5MB
  • 39 - Using the unittest Package.mp417.13MB
  • 40 - Using unittest.mock.mp410.55MB
  • 41 - Using unittest's Test Discovery.mp49.72MB
  • 42 - Using Nose for Unified Test Discover and Reporting.mp411MB
  • 43 - What Does Reactive Programming Mean.mp44.82MB
  • 44 - Building a Simple Reactive Programming Framework.mp414.64MB
  • 45 - Using the Reactive Extensions for Python (RxPY).mp433.64MB
  • 46 - Microservices and the Advantages of Process Isolation.mp48.2MB
  • 47 - Building a High-Level Microservice with Flask.mp424.79MB
  • 48 - Building a Low-Level Microservice with nameko.mp412.78MB
  • 49 - Advantages and Disadvantages of Compiled Code.mp410.42MB
  • 50 - Accessing a Dynamic Library Using ctypes.mp414.92MB
  • 51 - Interfacing with C Code Using Cython.mp427.33MB
  • 52 - The Course Overview.mp49.69MB
  • 53 - Brief Introduction to Data Mining.mp48.59MB
  • 54 - Data Mining Basic Concepts and Applications.mp414.24MB
  • 55 - Why Python.mp45.22MB
  • 56 - Basics of Python.mp49.58MB
  • 57 - Installing IPython.mp43.88MB
  • 58 - Installing the Numpy Library.mp48.8MB
  • 59 - Installing the pandas Library.mp414.97MB
  • 60 - Installing Matplotlib.mp411.96MB
  • 61 - Installing scikit-learn.mp43.75MB
  • 62 - Data Cleaning.mp49.19MB
  • 63 - Data Preprocessing Techniques.mp48.41MB
  • 64 - Linear Regression Basic Model Approach.mp414.03MB
  • 65 - Evaluating Regression Models.mp49.14MB
  • 66 - Basic Regression Model Implementation to Predict House Prices.mp435.83MB
  • 67 - Regression Model Implementation to Predict Television Show Viewers.mp440.35MB
  • 68 - Logistic Regression.mp46.92MB
  • 69 - K – Nearest Neighbors Classifier.mp48.89MB
  • 70 - Support Vector Machine.mp49.4MB
  • 71 - Logistic Regression Model Implementation.mp447.17MB
  • 72 - K – Nearest Neighbor Classifier Implementation.mp438.31MB
  • 73 - Preprocessing Data Using Different Techniques.mp426.46MB
  • 74 - Label Encoding.mp410.54MB
  • 75 - Building a Linear Regressor.mp419.66MB
  • 76 - Regression Accuracy and Model Persistence.mp417.5MB
  • 77 - Building a Ridge Regressor.mp412.3MB
  • 78 - Building a Polynomial Regressor.mp411.43MB
  • 79 - Estimating housing prices.mp416.9MB
  • 80 - Computing relative importance of features.mp47.58MB
  • 81 - Estimating bicycle demand distribution.mp417.97MB
  • 82 - Building a Simple Classifier.mp412.21MB
  • 83 - Building a Logistic Regression Classifier.mp420.2MB
  • 84 - Building a Naive Bayes’ Classifier.mp48.74MB
  • 85 - Splitting the Dataset for Training and Testing.mp46.14MB
  • 86 - Evaluating the Accuracy Using Cross-Validation.mp48.21MB
  • 87 - Visualizing the Confusion Matrix and Extracting the Performance Report.mp415.79MB
  • 88 - Evaluating Cars based on Their Characteristics.mp423.16MB
  • 89 - Extracting Validation Curves.mp414.08MB
  • 90 - Extracting Learning Curves.mp47.31MB
  • 91 - Extracting the Income Bracket.mp415.04MB
  • 92 - Building a Linear Classifier Using Support Vector Machine.mp420.2MB
  • 93 - Building Nonlinear Classifier Using SVMs.mp48MB
  • 94 - Tackling Class Imbalance.mp413.3MB
  • 95 - Extracting Confidence Measurements.mp412.01MB
  • 96 - Finding Optimal Hyper-Parameters.mp410.42MB
  • 97 - Building an Event Predictor.mp416.95MB
  • 98 - Estimating Traffic.mp410.82MB
  • 99 - Clustering Data Using the k-means Algorithm.mp413.45MB