本站已收录 番号和无损神作磁力链接/BT种子 

[UdemyCourseDownloader] Data Science and Machine Learning Bootcamp with R

种子简介

种子名称: [UdemyCourseDownloader] Data Science and Machine Learning Bootcamp with R
文件类型: 视频
文件数目: 119个文件
文件大小: 2.29 GB
收录时间: 2019-4-10 15:44
已经下载: 3
资源热度: 120
最近下载: 2024-12-16 12:02

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:9b2727c349d063e5b9aa1caebd14d6385fd4e26f&dn=[UdemyCourseDownloader] Data Science and Machine Learning Bootcamp with R 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[UdemyCourseDownloader] Data Science and Machine Learning Bootcamp with R.torrent
  • 18. Capstone Data Project/2. Capstone Project Solutions Walkthrough.mp454.46MB
  • 01. Course Introduction/1. Introduction to Course.mp412.43MB
  • 01. Course Introduction/2. Course Curriculum.mp45.71MB
  • 01. Course Introduction/3. What is Data Science.mp47.01MB
  • 03. Windows Installation Set-Up/1. Windows Installation Procedure.mp417.76MB
  • 04. Mac OS Installation Set-Up/1. Mac OS Installation Procedure.mp420.84MB
  • 06. Development Environment Overview/1. Development Environment Overview.mp4870.33KB
  • 06. Development Environment Overview/2. Course Notes.mp425.73MB
  • 06. Development Environment Overview/3. Guide to RStudio.mp428.33MB
  • 07. Introduction to R Basics/1. Introduction to R Basics.mp45.63MB
  • 07. Introduction to R Basics/2. Arithmetic in R.mp47.7MB
  • 07. Introduction to R Basics/3. Variables.mp48.94MB
  • 07. Introduction to R Basics/4. R Basic Data Types.mp49.06MB
  • 07. Introduction to R Basics/5. Vector Basics.mp413.67MB
  • 07. Introduction to R Basics/6. Vector Operations.mp47.55MB
  • 07. Introduction to R Basics/7. Comparison Operators.mp410.7MB
  • 07. Introduction to R Basics/8. Vector Indexing and Slicing.mp416.06MB
  • 07. Introduction to R Basics/9. Getting Help with R and RStudio.mp45.64MB
  • 07. Introduction to R Basics/10. R Basics Training Exercise.mp45.37MB
  • 07. Introduction to R Basics/11. R Basics Training Exercise - Solutions Walkthrough.mp412.78MB
  • 08. R Matrices/1. Introduction to R Matrices.mp41.46MB
  • 08. R Matrices/2. Creating a Matrix.mp418.64MB
  • 08. R Matrices/3. Matrix Arithmetic.mp47.78MB
  • 08. R Matrices/4. Matrix Operations.mp410.78MB
  • 08. R Matrices/5. Matrix Selection and Indexing.mp411.78MB
  • 08. R Matrices/6. Factor and Categorical Matrices.mp414.84MB
  • 08. R Matrices/7. Matrix Training Exercise.mp43.24MB
  • 08. R Matrices/8. Matrix Training Exercises - Solutions Walkthrough.mp424.63MB
  • 09. R Data Frames/1. Introduction to R Data Frames.mp41.36MB
  • 09. R Data Frames/2. Data Frame Basics.mp418.22MB
  • 09. R Data Frames/3. Data Frame Indexing and Selection.mp416.82MB
  • 09. R Data Frames/4. Overview of Data Frame Operations - Part 1.mp430.45MB
  • 09. R Data Frames/5. Overview of Data Frame Operations - Part 2.mp434.14MB
  • 09. R Data Frames/6. Data Frame Training Exercise.mp44.27MB
  • 09. R Data Frames/7. Data Frame Training Exercises - Solutions Walkthrough.mp428.97MB
  • 10. R Lists/1. List Basics.mp419.58MB
  • 11. Data Input and Output with R/1. Introduction to Data Input and Output with R.mp4869.69KB
  • 11. Data Input and Output with R/2. CSV Files with R.mp412.2MB
  • 11. Data Input and Output with R/3. Excel Files with R.mp424.17MB
  • 11. Data Input and Output with R/4. SQL with R.mp425.48MB
  • 11. Data Input and Output with R/5. Web Scraping with R.mp417.4MB
  • 12. R Programming Basics/1. Introduction to Programming Basics.mp41.72MB
  • 12. R Programming Basics/2. Logical Operators.mp414.52MB
  • 12. R Programming Basics/3. if, else, and else if Statements.mp425.93MB
  • 12. R Programming Basics/4. Conditional Statements Training Exercise.mp43.47MB
  • 12. R Programming Basics/5. Conditional Statements Training Exercise - Solutions Walkthrough.mp421.08MB
  • 12. R Programming Basics/6. While Loops.mp412MB
  • 12. R Programming Basics/7. For Loops.mp423.11MB
  • 12. R Programming Basics/8. Functions.mp435.11MB
  • 12. R Programming Basics/9. Functions Training Exercise.mp46.69MB
  • 12. R Programming Basics/10. Functions Training Exercise - Solutions.mp436.76MB
  • 13. Advanced R Programming/1. Introduction to Advanced R Programming.mp41.61MB
  • 13. Advanced R Programming/2. Built-in R Features.mp418.03MB
  • 13. Advanced R Programming/3. Apply.mp428.07MB
  • 13. Advanced R Programming/4. Math Functions with R.mp49.25MB
  • 13. Advanced R Programming/5. Regular Expressions.mp49.72MB
  • 13. Advanced R Programming/6. Dates and Timestamps.mp424.02MB
  • 14. Data Manipulation with R/1. Data Manipulation Overview.mp41.17MB
  • 14. Data Manipulation with R/2. Guide to Using Dplyr.mp425.14MB
  • 14. Data Manipulation with R/3. Guide to Using Dplyr - Part 2.mp420.53MB
  • 14. Data Manipulation with R/4. Pipe Operator.mp413.77MB
  • 14. Data Manipulation with R/6. Dplyr Training Exercise.mp42.69MB
  • 14. Data Manipulation with R/7. Dplyr Training Exercise - Solutions Walkthrough.mp413.79MB
  • 14. Data Manipulation with R/8. Guide to Using Tidyr.mp447.11MB
  • 15. Data Visualization with R/1. Overview of ggplot2.mp411.99MB
  • 15. Data Visualization with R/2. Histograms.mp445.61MB
  • 15. Data Visualization with R/3. Scatterplots.mp437.54MB
  • 15. Data Visualization with R/4. Barplots.mp416.79MB
  • 15. Data Visualization with R/5. Boxplots.mp414.09MB
  • 15. Data Visualization with R/6. 2 Variable Plotting.mp420.42MB
  • 15. Data Visualization with R/7. Coordinates and Faceting.mp424.08MB
  • 15. Data Visualization with R/8. Themes.mp411.24MB
  • 15. Data Visualization with R/9. ggplot2 Exercises.mp46.7MB
  • 15. Data Visualization with R/10. ggplot2 Exercise Solutions.mp426.03MB
  • 16. Data Visualization Project/1. Data Visualization Project.mp411.61MB
  • 16. Data Visualization Project/2. Data Visualization Project - Solutions Walkthrough - Part 1.mp432.61MB
  • 16. Data Visualization Project/3. Data Visualization Project Solutions Walkthrough - Part 2.mp432.13MB
  • 17. Interactive Visualizations with Plotly/1. Overview of Plotly and Interactive Visualizations.mp433.53MB
  • 18. Capstone Data Project/1. Introduction to Capstone Project.mp434.96MB
  • 19. Introduction to Machine Learning with R/2. Introduction to Machine Learning.mp448.51MB
  • 20. Machine Learning with R - Linear Regression/1. Introduction to Linear Regression.mp410.18MB
  • 20. Machine Learning with R - Linear Regression/2. Linear Regression with R - Part 1.mp446.95MB
  • 20. Machine Learning with R - Linear Regression/3. Linear Regression with R - Part 2.mp445.94MB
  • 20. Machine Learning with R - Linear Regression/4. Linear Regression with R - Part 3.mp422.79MB
  • 21. Machine Learning Project - Linear Regression/1. Introduction to Linear Regression Project.mp433.67MB
  • 21. Machine Learning Project - Linear Regression/2. ML - Linear Regression Project - Solutions Part 1.mp447.76MB
  • 21. Machine Learning Project - Linear Regression/3. ML - Linear Regression Project - Solutions Part 2.mp426.07MB
  • 22. Machine Learning with R - Logistic Regression/1. Introduction to Logistic Regression.mp419.84MB
  • 22. Machine Learning with R - Logistic Regression/2. Logistic Regression with R - Part 1.mp439.59MB
  • 22. Machine Learning with R - Logistic Regression/3. Logistic Regression with R - Part 2.mp440.93MB
  • 23. Machine Learning Project - Logistic Regression/1. Introduction to Logistic Regression Project.mp410.1MB
  • 23. Machine Learning Project - Logistic Regression/2. Logistic Regression Project Solutions - Part 1.mp447.41MB
  • 23. Machine Learning Project - Logistic Regression/3. Logistic Regression Project Solutions - Part 2.mp432.84MB
  • 23. Machine Learning Project - Logistic Regression/4. Logistic Regression Project - Solutions Part 3.mp432.17MB
  • 24. Machine Learning with R - K Nearest Neighbors/1. Introduction to K Nearest Neighbors.mp48.51MB
  • 24. Machine Learning with R - K Nearest Neighbors/2. K Nearest Neighbors with R.mp440.42MB
  • 25. Machine Learning Project - K Nearest Neighbors/1. Introduction K Nearest Neighbors Project.mp411.71MB
  • 25. Machine Learning Project - K Nearest Neighbors/2. K Nearest Neighbors Project Solutions.mp425.18MB
  • 26. Machine Learning with R - Decision Trees and Random Forests/1. Introduction to Tree Methods.mp411.25MB
  • 26. Machine Learning with R - Decision Trees and Random Forests/2. Decision Trees and Random Forests with R.mp428.82MB
  • 27. Machine Learning Project - Decision Trees and Random Forests/1. Introduction to Decision Trees and Random Forests Project.mp48.44MB
  • 27. Machine Learning Project - Decision Trees and Random Forests/2. Tree Methods Project Solutions - Part 1.mp433.43MB
  • 27. Machine Learning Project - Decision Trees and Random Forests/3. Tree Methods Project Solutions - Part 2.mp49.15MB
  • 28. Machine Learning with R - Support Vector Machines/1. Introduction to Support Vector Machines.mp47.97MB
  • 28. Machine Learning with R - Support Vector Machines/2. Support Vector Machines with R.mp432.98MB
  • 29. Machine Learning Project - Support Vector Machines/1. Introduction to SVM Project.mp49.32MB
  • 29. Machine Learning Project - Support Vector Machines/2. Support Vector Machines Project - Solutions Part 1.mp424.13MB
  • 29. Machine Learning Project - Support Vector Machines/3. Support Vector Machines Project - Solutions Part 2.mp421.04MB
  • 30. Machine Learning with R - K-means Clustering/1. Introduction to K-Means Clustering.mp48.57MB
  • 30. Machine Learning with R - K-means Clustering/2. K Means Clustering with R.mp419.21MB
  • 31. Machine Learning Project - K-means Clustering/1. Introduction to K Means Clustering Project.mp47.22MB
  • 31. Machine Learning Project - K-means Clustering/2. K Means Clustering Project - Solutions Walkthrough.mp432.97MB
  • 32. Machine Learning with R - Natural Language Processing/1. Introduction to Natural Language Processing.mp47.58MB
  • 32. Machine Learning with R - Natural Language Processing/2. Natural Language Processing with R - Part 1.mp410.44MB
  • 32. Machine Learning with R - Natural Language Processing/3. Natural Language Processing with R - Part 2.mp435.68MB
  • 33. Machine Learning with R - Neural Nets/1. Introduction to Neural Nets.mp411.22MB
  • 33. Machine Learning with R - Neural Nets/2. Neural Nets with R.mp446.26MB
  • 34. Machine Learning Project - Neural Nets/1. Introduction to Neural Nets Project.mp48.39MB
  • 34. Machine Learning Project - Neural Nets/2. Neural Nets Project - Solutions.mp420.61MB