种子简介
种子名称:
Experimental Design for Data Analysis
文件类型:
视频
文件数目:
40个文件
文件大小:
343.32 MB
收录时间:
2025-5-18 01:14
已经下载:
3次
资源热度:
23
最近下载:
2025-5-28 15:59
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:9e737177f3eb98cb7c679c0ae14768f3406c7dcc&dn=Experimental Design for Data Analysis
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
Experimental Design for Data Analysis.torrent
01. Course Overview/01. Course Overview.mp43.7MB
02. Designing an Experiment for Data Analysis/01. Module Overview.mp42.04MB
02. Designing an Experiment for Data Analysis/02. Prerequisites and Course Outline.mp41.75MB
02. Designing an Experiment for Data Analysis/03. Connecting the Dots with Data.mp44.35MB
02. Designing an Experiment for Data Analysis/04. Hypothesis Testing.mp411.93MB
02. Designing an Experiment for Data Analysis/05. T-tests.mp45.19MB
02. Designing an Experiment for Data Analysis/06. ANOVA.mp47.64MB
02. Designing an Experiment for Data Analysis/07. Designing a Machine Learning Experiment.mp48.5MB
02. Designing an Experiment for Data Analysis/08. Summary.mp42.58MB
03. Building and Training a Machine Learning Model/01. Module Overview.mp42.35MB
03. Building and Training a Machine Learning Model/02. Getting Started with Azure ML Studio.mp413.5MB
03. Building and Training a Machine Learning Model/03. Loading and Visualizing Data.mp412.53MB
03. Building and Training a Machine Learning Model/04. Exploring Relationships in Data.mp412MB
03. Building and Training a Machine Learning Model/05. Preprocessing and Preparing Data.mp416.08MB
03. Building and Training a Machine Learning Model/06. Building and Training a Regression Model for Price Prediction.mp419.86MB
03. Building and Training a Machine Learning Model/07. Building and Training a Regression Model in Python.mp423.26MB
03. Building and Training a Machine Learning Model/08. Summary.mp41.96MB
04. Understanding and Overcoming Common Problems in Data Modeling/01. Module Overview.mp41.72MB
04. Understanding and Overcoming Common Problems in Data Modeling/02. Overfitting and Techniques to Mitigate Overfitting.mp410.58MB
04. Understanding and Overcoming Common Problems in Data Modeling/03. Accuracy, Precision, and Recall.mp47.8MB
04. Understanding and Overcoming Common Problems in Data Modeling/04. The ROC Curve.mp46.17MB
04. Understanding and Overcoming Common Problems in Data Modeling/05. Preparing and Processing Data.mp418.75MB
04. Understanding and Overcoming Common Problems in Data Modeling/06. Building Training and Evaluating a Classification Model.mp420.13MB
04. Understanding and Overcoming Common Problems in Data Modeling/07. Summary.mp42.09MB
05. Leveraging Different Validation Strategies in Data Modeling/01. Module Overview.mp41.99MB
05. Leveraging Different Validation Strategies in Data Modeling/02. Cross-validation in the ML Workflow.mp43.48MB
05. Leveraging Different Validation Strategies in Data Modeling/03. Singular Cross-validation.mp45.15MB
05. Leveraging Different Validation Strategies in Data Modeling/04. Cross-validation Using Azure ML Studio.mp415.52MB
05. Leveraging Different Validation Strategies in Data Modeling/05. K-fold Cross-validation and Variants.mp49.91MB
05. Leveraging Different Validation Strategies in Data Modeling/06. K-fold Cross-validation in scikit-learn.mp415.58MB
05. Leveraging Different Validation Strategies in Data Modeling/07. Repeated K-fold Cross-validation in scikit-learn.mp49.43MB
05. Leveraging Different Validation Strategies in Data Modeling/08. Stratified K-fold Cross-validation in scikit-learn.mp412.59MB
05. Leveraging Different Validation Strategies in Data Modeling/09. Group K-fold in scikit-learn.mp48.77MB
05. Leveraging Different Validation Strategies in Data Modeling/10. Summary.mp41.98MB
06. Tuning Hyperparameters Using Cross Validation Scores/01. Module Overview.mp43.43MB
06. Tuning Hyperparameters Using Cross Validation Scores/02. Hyperparameter Tuning.mp43.19MB
06. Tuning Hyperparameters Using Cross Validation Scores/03. Decision Trees.mp44.56MB
06. Tuning Hyperparameters Using Cross Validation Scores/04. Hyperparameter Tuning a Decision Forest Classifier.mp416.95MB
06. Tuning Hyperparameters Using Cross Validation Scores/05. Tuning and Scoring Multiple Models.mp412.6MB
06. Tuning Hyperparameters Using Cross Validation Scores/06. Summary and Further Study.mp41.74MB