本站已收录 番号和无损神作磁力链接/BT种子 

Experimental Design for Data Analysis

种子简介

种子名称: Experimental Design for Data Analysis
文件类型: 视频
文件数目: 40个文件
文件大小: 343.32 MB
收录时间: 2025-5-18 01:14
已经下载: 3
资源热度: 23
最近下载: 2025-5-28 15:59

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:9e737177f3eb98cb7c679c0ae14768f3406c7dcc&dn=Experimental Design for Data Analysis 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

Experimental Design for Data Analysis.torrent
  • 01. Course Overview/01. Course Overview.mp43.7MB
  • 02. Designing an Experiment for Data Analysis/01. Module Overview.mp42.04MB
  • 02. Designing an Experiment for Data Analysis/02. Prerequisites and Course Outline.mp41.75MB
  • 02. Designing an Experiment for Data Analysis/03. Connecting the Dots with Data.mp44.35MB
  • 02. Designing an Experiment for Data Analysis/04. Hypothesis Testing.mp411.93MB
  • 02. Designing an Experiment for Data Analysis/05. T-tests.mp45.19MB
  • 02. Designing an Experiment for Data Analysis/06. ANOVA.mp47.64MB
  • 02. Designing an Experiment for Data Analysis/07. Designing a Machine Learning Experiment.mp48.5MB
  • 02. Designing an Experiment for Data Analysis/08. Summary.mp42.58MB
  • 03. Building and Training a Machine Learning Model/01. Module Overview.mp42.35MB
  • 03. Building and Training a Machine Learning Model/02. Getting Started with Azure ML Studio.mp413.5MB
  • 03. Building and Training a Machine Learning Model/03. Loading and Visualizing Data.mp412.53MB
  • 03. Building and Training a Machine Learning Model/04. Exploring Relationships in Data.mp412MB
  • 03. Building and Training a Machine Learning Model/05. Preprocessing and Preparing Data.mp416.08MB
  • 03. Building and Training a Machine Learning Model/06. Building and Training a Regression Model for Price Prediction.mp419.86MB
  • 03. Building and Training a Machine Learning Model/07. Building and Training a Regression Model in Python.mp423.26MB
  • 03. Building and Training a Machine Learning Model/08. Summary.mp41.96MB
  • 04. Understanding and Overcoming Common Problems in Data Modeling/01. Module Overview.mp41.72MB
  • 04. Understanding and Overcoming Common Problems in Data Modeling/02. Overfitting and Techniques to Mitigate Overfitting.mp410.58MB
  • 04. Understanding and Overcoming Common Problems in Data Modeling/03. Accuracy, Precision, and Recall.mp47.8MB
  • 04. Understanding and Overcoming Common Problems in Data Modeling/04. The ROC Curve.mp46.17MB
  • 04. Understanding and Overcoming Common Problems in Data Modeling/05. Preparing and Processing Data.mp418.75MB
  • 04. Understanding and Overcoming Common Problems in Data Modeling/06. Building Training and Evaluating a Classification Model.mp420.13MB
  • 04. Understanding and Overcoming Common Problems in Data Modeling/07. Summary.mp42.09MB
  • 05. Leveraging Different Validation Strategies in Data Modeling/01. Module Overview.mp41.99MB
  • 05. Leveraging Different Validation Strategies in Data Modeling/02. Cross-validation in the ML Workflow.mp43.48MB
  • 05. Leveraging Different Validation Strategies in Data Modeling/03. Singular Cross-validation.mp45.15MB
  • 05. Leveraging Different Validation Strategies in Data Modeling/04. Cross-validation Using Azure ML Studio.mp415.52MB
  • 05. Leveraging Different Validation Strategies in Data Modeling/05. K-fold Cross-validation and Variants.mp49.91MB
  • 05. Leveraging Different Validation Strategies in Data Modeling/06. K-fold Cross-validation in scikit-learn.mp415.58MB
  • 05. Leveraging Different Validation Strategies in Data Modeling/07. Repeated K-fold Cross-validation in scikit-learn.mp49.43MB
  • 05. Leveraging Different Validation Strategies in Data Modeling/08. Stratified K-fold Cross-validation in scikit-learn.mp412.59MB
  • 05. Leveraging Different Validation Strategies in Data Modeling/09. Group K-fold in scikit-learn.mp48.77MB
  • 05. Leveraging Different Validation Strategies in Data Modeling/10. Summary.mp41.98MB
  • 06. Tuning Hyperparameters Using Cross Validation Scores/01. Module Overview.mp43.43MB
  • 06. Tuning Hyperparameters Using Cross Validation Scores/02. Hyperparameter Tuning.mp43.19MB
  • 06. Tuning Hyperparameters Using Cross Validation Scores/03. Decision Trees.mp44.56MB
  • 06. Tuning Hyperparameters Using Cross Validation Scores/04. Hyperparameter Tuning a Decision Forest Classifier.mp416.95MB
  • 06. Tuning Hyperparameters Using Cross Validation Scores/05. Tuning and Scoring Multiple Models.mp412.6MB
  • 06. Tuning Hyperparameters Using Cross Validation Scores/06. Summary and Further Study.mp41.74MB