本站已收录 番号和无损神作磁力链接/BT种子 

Neural Networks for Machine Learning

种子简介

种子名称: Neural Networks for Machine Learning
文件类型:
文件数目: 78个文件
文件大小: 884.54 MB
收录时间: 2013-1-31 18:52
已经下载: 3
资源热度: 130
最近下载: 2024-11-30 05:17

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:C44EA3E669C895B7EF510B09CA044C03B500DC8F&dn=Neural Networks for Machine Learning 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

Neural Networks for Machine Learning.torrent
  • 5 - 4 - Convolutional nets for object recognition [17min].mp423.03MB
  • 7 - 1 - Modeling sequences A brief overview.mp420.13MB
  • 14 - 1 - Learning layers of features by stacking RBMs [17 min].mp420.07MB
  • 14 - 5 - OPTIONAL VIDEO RBMs are infinite sigmoid belief nets [17 mins].mp419.44MB
  • 5 - 3 - Convolutional nets for digit recognition [16 min].mp418.46MB
  • 12 - 2 - OPTIONAL VIDEO More efficient ways to get the statistics [15 mins].mp416.93MB
  • 2 - 5 - What perceptrons cant do [15 min].mp416.57MB
  • 8 - 2 - Modeling character strings with multiplicative connections [14 mins].mp416.56MB
  • 8 - 1 - A brief overview of Hessian Free optimization.mp416.24MB
  • 16 - 3 - OPTIONAL Bayesian optimization of hyper-parameters [13 min].mp415.8MB
  • 13 - 4 - The wake-sleep algorithm [13 min].mp415.68MB
  • 10 - 1 - Why it helps to combine models [13 min].mp415.12MB
  • 6 - 5 - Rmsprop Divide the gradient by a running average of its recent magnitude.mp415.12MB
  • 1 - 1 - Why do we need machine learning [13 min].mp415.05MB
  • 10 - 2 - Mixtures of Experts [13 min].mp414.98MB
  • 6 - 2 - A bag of tricks for mini-batch gradient descent.mp414.9MB
  • 13 - 2 - Belief Nets [13 min].mp414.86MB
  • 11 - 1 - Hopfield Nets [13 min].mp414.65MB
  • 4 - 1 - Learning to predict the next word [13 min].mp414.28MB
  • 4 - 5 - Ways to deal with the large number of possible outputs [15 min].mp414.26MB
  • 12 - 1 - Boltzmann machine learning [12 min].mp414.03MB
  • 8 - 3 - Learning to predict the next character using HF [12 mins].mp413.92MB
  • 16 - 1 - OPTIONAL Learning a joint model of images and captions [10 min].mp413.83MB
  • 13 - 3 - Learning sigmoid belief nets [12 min].mp413.59MB
  • 9 - 1 - Overview of ways to improve generalization [12 min].mp413.57MB
  • 3 - 1 - Learning the weights of a linear neuron [12 min].mp413.52MB
  • 3 - 4 - The backpropagation algorithm [12 min].mp413.35MB
  • 11 - 5 - How a Boltzmann machine models data [12 min].mp413.28MB
  • 11 - 2 - Dealing with spurious minima [11 min].mp412.77MB
  • 12 - 3 - Restricted Boltzmann Machines [11 min].mp412.68MB
  • 9 - 5 - The Bayesian interpretation of weight decay [11 min].mp412.27MB
  • 9 - 4 - Introduction to the full Bayesian approach [12 min].mp412MB
  • 13 - 1 - The ups and downs of back propagation [10 min].mp411.83MB
  • 11 - 4 - Using stochastic units to improv search [11 min].mp411.76MB
  • 15 - 5 - Learning binary codes for image retrieval [9 mins].mp411.51MB
  • 11 - 3 - Hopfield nets with hidden units [10 min].mp411.31MB
  • 14 - 2 - Discriminative learning for DBNs [9 mins].mp411.29MB
  • 8 - 4 - Echo State Networks [9 min].mp411.28MB
  • 14 - 4 - Modeling real-valued data with an RBM [10 mins].mp411.2MB
  • 16 - 2 - OPTIONAL Hierarchical Coordinate Frames [10 mins].mp411.16MB
  • 3 - 5 - Using the derivatives computed by backpropagation [10 min].mp411.15MB
  • 15 - 3 - Deep auto encoders for document retrieval [8 mins].mp410.25MB
  • 7 - 5 - Long-term Short-term-memory.mp410.23MB
  • 14 - 3 - What happens during discriminative fine-tuning [8 mins].mp410.17MB
  • 15 - 4 - Semantic Hashing [9 mins].mp49.99MB
  • 1 - 2 - What are neural networks [8 min].mp49.76MB
  • 6 - 3 - The momentum method.mp49.74MB
  • 10 - 5 - Dropout [9 min].mp49.69MB
  • 15 - 1 - From PCA to autoencoders [5 mins].mp49.68MB
  • 6 - 1 - Overview of mini-batch gradient descent.mp49.6MB
  • 12 - 5 - RBMs for collaborative filtering [8 mins].mp49.53MB
  • 2 - 2 - Perceptrons The first generation of neural networks [8 min].mp49.39MB
  • 1 - 3 - Some simple models of neurons [8 min].mp49.26MB
  • 1 - 5 - Three types of learning [8 min].mp48.96MB
  • 4 - 4 - Neuro-probabilistic language models [8 min].mp48.93MB
  • 7 - 4 - Why it is difficult to train an RNN.mp48.89MB
  • 2 - 1 - Types of neural network architectures [7 min].mp48.78MB
  • 12 - 4 - An example of RBM learning [7 mins].mp48.71MB
  • 9 - 3 - Using noise as a regularizer [7 min].mp48.48MB
  • 10 - 3 - The idea of full Bayesian learning [7 min].mp48.39MB
  • 15 - 6 - Shallow autoencoders for pre-training [7 mins].mp48.25MB
  • 10 - 4 - Making full Bayesian learning practical [7 min].mp48.13MB
  • 4 - 3 - Another diversion The softmax output function [7 min].mp48.03MB
  • 9 - 2 - Limiting the size of the weights [6 min].mp47.36MB
  • 7 - 2 - Training RNNs with back propagation.mp47.33MB
  • 2 - 3 - A geometrical view of perceptrons [6 min].mp47.32MB
  • 7 - 3 - A toy example of training an RNN.mp47.24MB
  • 5 - 2 - Achieving viewpoint invariance [6 min].mp46.89MB
  • 6 - 4 - Adaptive learning rates for each connection.mp46.63MB
  • 1 - 4 - A simple example of learning [6 min].mp46.57MB
  • 2 - 4 - Why the learning works [5 min].mp45.9MB
  • 3 - 2 - The error surface for a linear neuron [5 min].mp45.89MB
  • 5 - 1 - Why object recognition is difficult [5 min].mp45.37MB
  • 4 - 2 - A brief diversion into cognitive science [4 min].mp45.31MB
  • 15 - 2 - Deep auto encoders [4 mins].mp44.92MB
  • 9 - 6 - MacKays quick and dirty method of setting weight costs [4 min].mp44.37MB
  • 3 - 3 - Learning the weights of a logistic output neuron [4 min].mp44.37MB
  • 16 - 4 - OPTIONAL The fog of progress [3 min].mp42.78MB