本站已收录 番号和无损神作磁力链接/BT种子 

[GigaCourse.com] Udemy - Support Vector Machines in Python - SVM in Python 2019

种子简介

种子名称: [GigaCourse.com] Udemy - Support Vector Machines in Python - SVM in Python 2019
文件类型: 视频
文件数目: 52个文件
文件大小: 2.15 GB
收录时间: 2022-8-7 02:28
已经下载: 3
资源热度: 210
最近下载: 2025-1-5 08:55

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:a776e8269fee689e79c72ba5c8492b0a47240553&dn=[GigaCourse.com] Udemy - Support Vector Machines in Python - SVM in Python 2019 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[GigaCourse.com] Udemy - Support Vector Machines in Python - SVM in Python 2019.torrent
  • 1. Setting up Python and Python Crash Course/1. Installing Python and Anaconda.mp418.56MB
  • 1. Setting up Python and Python Crash Course/10. Working with Seaborn Library of Python.mp448.63MB
  • 1. Setting up Python and Python Crash Course/3. Opening Jupyter Notebook.mp473.04MB
  • 1. Setting up Python and Python Crash Course/4. Introduction to Jupyter.mp450.9MB
  • 1. Setting up Python and Python Crash Course/5. Arithmetic operators in Python Python Basics.mp415.9MB
  • 1. Setting up Python and Python Crash Course/6. Strings in Python Python Basics.mp480.04MB
  • 1. Setting up Python and Python Crash Course/7. Lists, Tuples and Directories Python Basics.mp473.16MB
  • 1. Setting up Python and Python Crash Course/8. Working with Numpy Library of Python.mp453.76MB
  • 1. Setting up Python and Python Crash Course/9. Working with Pandas Library of Python.mp456.13MB
  • 2. Machine Learning Basics/1. Introduction to Machine Learning.mp4123.26MB
  • 2. Machine Learning Basics/2. Building a Machine Learning Model.mp444.92MB
  • 3. Maximum Margin Classifier/1. Course flow.mp49.78MB
  • 3. Maximum Margin Classifier/2. The Concept of a Hyperplane.mp435.33MB
  • 3. Maximum Margin Classifier/3. Maximum Margin Classifier.mp426.18MB
  • 3. Maximum Margin Classifier/4. Limitations of Maximum Margin Classifier.mp412.52MB
  • 4. Support Vector Classifier/1. Support Vector classifiers.mp464.11MB
  • 4. Support Vector Classifier/2. Limitations of Support Vector Classifiers.mp412.96MB
  • 5. Support Vector Machines/1. Kernel Based Support Vector Machines.mp445.7MB
  • 6. Creating Support Vector Machine Model in Python/1. Regression and Classification Models.mp45.21MB
  • 6. Creating Support Vector Machine Model in Python/10. The Data set for the Classification problem.mp421.99MB
  • 6. Creating Support Vector Machine Model in Python/11. Classification model - Preprocessing.mp454.47MB
  • 6. Creating Support Vector Machine Model in Python/12. Classification model - Standardizing the data.mp411.88MB
  • 6. Creating Support Vector Machine Model in Python/13. SVM Based classification model.mp478.52MB
  • 6. Creating Support Vector Machine Model in Python/14. Hyper Parameter Tuning.mp470.8MB
  • 6. Creating Support Vector Machine Model in Python/15. Polynomial Kernel with Hyperparameter Tuning.mp422.94MB
  • 6. Creating Support Vector Machine Model in Python/16. Radial Kernel with Hyperparameter Tuning.mp445.73MB
  • 6. Creating Support Vector Machine Model in Python/2. The Data set for the Regression problem.mp441.72MB
  • 6. Creating Support Vector Machine Model in Python/3. Importing data for regression model.mp432.16MB
  • 6. Creating Support Vector Machine Model in Python/4. Missing value treatment.mp422.3MB
  • 6. Creating Support Vector Machine Model in Python/5. Dummy Variable creation.mp431.72MB
  • 6. Creating Support Vector Machine Model in Python/6. X-y Split.mp419.36MB
  • 6. Creating Support Vector Machine Model in Python/7. Test-Train Split.mp427.48MB
  • 6. Creating Support Vector Machine Model in Python/8. Standardizing the data.mp447.28MB
  • 6. Creating Support Vector Machine Model in Python/9. SVM based Regression Model in Python.mp479.83MB
  • 8. Appendix 1 Data Preprocessing/1. Gathering Business Knowledge.mp422.31MB
  • 8. Appendix 1 Data Preprocessing/10. Missing Value Imputation in Python.mp423.4MB
  • 8. Appendix 1 Data Preprocessing/11. Seasonality in Data.mp417.03MB
  • 8. Appendix 1 Data Preprocessing/12. Bi-variate analysis and Variable transformation.mp4100.44MB
  • 8. Appendix 1 Data Preprocessing/13. Variable transformation and deletion in Python.mp444.11MB
  • 8. Appendix 1 Data Preprocessing/14. Non-usable variables.mp420.24MB
  • 8. Appendix 1 Data Preprocessing/15. Dummy variable creation Handling qualitative data.mp436.83MB
  • 8. Appendix 1 Data Preprocessing/16. Dummy variable creation in Python.mp426.55MB
  • 8. Appendix 1 Data Preprocessing/17. Correlation Analysis.mp471.62MB
  • 8. Appendix 1 Data Preprocessing/18. Correlation Analysis in Python.mp455.32MB
  • 8. Appendix 1 Data Preprocessing/2. Data Exploration.mp420.5MB
  • 8. Appendix 1 Data Preprocessing/3. The Dataset and the Data Dictionary.mp469.4MB
  • 8. Appendix 1 Data Preprocessing/4. Importing Data in Python.mp427.81MB
  • 8. Appendix 1 Data Preprocessing/5. Univariate analysis and EDD.mp424.21MB
  • 8. Appendix 1 Data Preprocessing/6. EDD in Python.mp461.78MB
  • 8. Appendix 1 Data Preprocessing/7. Outlier Treatment.mp424.5MB
  • 8. Appendix 1 Data Preprocessing/8. Outlier Treatment in Python.mp470.23MB
  • 8. Appendix 1 Data Preprocessing/9. Missing Value Imputation.mp424.97MB