种子简介
种子名称:
[CourseClub.Me] O'REILLY - Python for Data Science Complete Video Course Video Training
文件类型:
视频
文件数目:
89个文件
文件大小:
13.13 GB
收录时间:
2020-2-9 16:20
已经下载:
3次
资源热度:
278
最近下载:
2024-11-1 18:50
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:a8c15cdfd9b2b16a7a39ce1904cffa9d506d0eb2&dn=[CourseClub.Me] O'REILLY - Python for Data Science Complete Video Course Video Training
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
[CourseClub.Me] O'REILLY - Python for Data Science Complete Video Course Video Training.torrent
01 - Python for Data Science Complete Video Course Video Training - Introduction.mp476.64MB
02 - Learning objectives.mp411.21MB
03 - 1.1 History of Python in data science.mp478.08MB
04 - 1.2 Overview of Python data science libraries.mp444.37MB
05 - 1.3 Future trends of Python in AI, ML, and data science.mp477.54MB
06 - Learning objectives.mp425MB
07 - 2.1 Create your first Colab document.mp4328.82MB
08 - 2.2 Manage Colab documents.mp4451.8MB
09 - 2.3 Use magic functions.mp4156.26MB
10 - 2.4 Understand compatibility with Jupyter.mp4258.05MB
11 - Learning objectives.mp428.81MB
12 - 3.1 Write procedural code.mp4112.86MB
13 - 3.2 Use simple expressions and variables.mp4173.93MB
14 - 3.3 Work with the built-in types.mp466.6MB
15 - 3.4 Learn to Print.mp470.6MB
16 - 3.5 Perform basic math operations.mp4167.11MB
17 - 3.6 Use classes and objects with dot notation.mp4194.46MB
18 - Learning objectives.mp417MB
19 - 4.1 Use string methods.mp4131.93MB
20 - 4.2 Format strings.mp498.69MB
21 - 4.3 Manipulate strings - membership, slicing, and concatenation.mp4136.75MB
22 - 4.4 Learn to use unicode.mp474.37MB
23 - Learning objectives.mp422.45MB
24 - 5.1 Use lists and tuples.mp4369.96MB
25 - 5.2 Explore dictionaries.mp4213.33MB
26 - 5.3 Dive into sets.mp483.03MB
27 - 5.4 Work with the numpy array.mp4234.44MB
28 - 5.5 Use the Pandas DataFrame.mp4116.78MB
29 - 5.6 Use the Pandas Series.mp471.62MB
30 - Learning objectives.mp424MB
31 - 6.1 Convert lists to dicts and back.mp474.45MB
32 - 6.2 Convert dicts to Pandas Dataframe.mp4104.57MB
33 - 6.3 Convert characters to integers and back.mp435.73MB
34 - 6.4 Convert between hexadecimal, binary, and floats.mp4101.36MB
35 - Learning objectives.mp424.93MB
36 - 7.1 Learn to loop with for loops.mp444.92MB
37 - 7.2 Repeat with while loops.mp450.23MB
38 - 7.3 Learn to handle exceptions.mp4111.94MB
39 - 7.4 Use conditionals.mp4168.25MB
40 - Learning objectives.mp422.46MB
41 - 8.1 Write and use functions.mp4206.47MB
42 - 8.2 Learn to use decorators.mp4210.94MB
43 - 8.3 Compose closure functions.mp4132.86MB
44 - 8.4 Use lambdas.mp4106.23MB
45 - 8.5 Advanced Use of Functions.mp4319.02MB
46 - Learning objectives.mp433.79MB
47 - 9.1 Learn NumPy.mp4287.95MB
48 - 9.2 Learn SciPy.mp4664.99MB
49 - 9.3 Learn Pandas.mp4335.61MB
50 - 9.4 Learn TensorFlow.mp4341.9MB
51 - 9.5 Use Seaborn for 2D plots.mp4261.65MB
52 - 9.6 Use Plotly for interactive plots.mp4262.06MB
53 - 9.7 Specialized Visualization Libraries.mp4241.69MB
54 - 9.8 Learn Natural Language Processing Libraries.mp4124.95MB
55 - Learning objectives.mp427.7MB
56 - 10.1 Understand functional programming.mp4151.13MB
57 - 10.2 Apply functions to data science workflows.mp447.12MB
58 - 10.3 Use map_reduce_filter.mp495.23MB
59 - 10.4 Use list comprehensions.mp498.27MB
60 - 10.5 Use dictionary comprehensions.mp415.45MB
61 - Learning objectives.mp417.83MB
62 - 11.1 Use generators.mp469.4MB
63 - 11.2 Design generator pipelines.mp4141.25MB
64 - 11.3 Implement lazy evaluation functions.mp459.14MB
65 - Learning objectives.mp420.97MB
66 - 12.1 Perform simple pattern matching.mp497.05MB
67 - 12.2 Use regular expressions.mp4284.59MB
68 - 12.3 Learn text processing techniques - Beautiful Soup.mp487.6MB
69 - Learning objectives.mp418.2MB
70 - 13.1 Sort in Python.mp4186.66MB
71 - 13.2 Create custom sorting functions.mp4229.33MB
72 - 13.3 Sort in Pandas.mp4301.95MB
73 - Learning objectives.mp422.1MB
74 - 14.1 Read and write files - file, pickle, CSV, JSON.mp4214.71MB
75 - 14.2 Read and write with Pandas - CSV, JSON.mp4336.5MB
76 - 14.3 Read and write using web resources (requests, boto, github).mp4110.86MB
77 - 14.4 Use function-based concurrency.mp4608.14MB
78 - Learning objectives.mp420.91MB
79 - 15.1 Share with Github.mp4358.09MB
80 - 15.2 Create Kaggle Kernels.mp4207.48MB
81 - 15.3 Collaborate with Colab.mp4125.18MB
82 - 15.4 Post public graphs with Plotly.mp4103.5MB
83 - Learning Objectives.mp428.71MB
84 - 16.1 PyTest.mp4372.92MB
85 - 16.2 Visual Studio Code.mp4364.64MB
86 - 16.3 Vim.mp4136.81MB
87 - 16.4 Ludwig (Open Source AutoML).mp4146.48MB
88 - 16.5 Sklearn Algorithm Cheatsheet.mp4104.05MB
89 - 16.6 Recommendations.mp447.75MB