本站已收录 番号和无损神作磁力链接/BT种子 

[CourseClub.Me] O'REILLY - Python for Data Science Complete Video Course Video Training

种子简介

种子名称: [CourseClub.Me] O'REILLY - Python for Data Science Complete Video Course Video Training
文件类型: 视频
文件数目: 89个文件
文件大小: 13.13 GB
收录时间: 2020-2-9 16:20
已经下载: 3
资源热度: 278
最近下载: 2024-11-1 18:50

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:a8c15cdfd9b2b16a7a39ce1904cffa9d506d0eb2&dn=[CourseClub.Me] O'REILLY - Python for Data Science Complete Video Course Video Training 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[CourseClub.Me] O'REILLY - Python for Data Science Complete Video Course Video Training.torrent
  • 01 - Python for Data Science Complete Video Course Video Training - Introduction.mp476.64MB
  • 02 - Learning objectives.mp411.21MB
  • 03 - 1.1 History of Python in data science.mp478.08MB
  • 04 - 1.2 Overview of Python data science libraries.mp444.37MB
  • 05 - 1.3 Future trends of Python in AI, ML, and data science.mp477.54MB
  • 06 - Learning objectives.mp425MB
  • 07 - 2.1 Create your first Colab document.mp4328.82MB
  • 08 - 2.2 Manage Colab documents.mp4451.8MB
  • 09 - 2.3 Use magic functions.mp4156.26MB
  • 10 - 2.4 Understand compatibility with Jupyter.mp4258.05MB
  • 11 - Learning objectives.mp428.81MB
  • 12 - 3.1 Write procedural code.mp4112.86MB
  • 13 - 3.2 Use simple expressions and variables.mp4173.93MB
  • 14 - 3.3 Work with the built-in types.mp466.6MB
  • 15 - 3.4 Learn to Print.mp470.6MB
  • 16 - 3.5 Perform basic math operations.mp4167.11MB
  • 17 - 3.6 Use classes and objects with dot notation.mp4194.46MB
  • 18 - Learning objectives.mp417MB
  • 19 - 4.1 Use string methods.mp4131.93MB
  • 20 - 4.2 Format strings.mp498.69MB
  • 21 - 4.3 Manipulate strings - membership, slicing, and concatenation.mp4136.75MB
  • 22 - 4.4 Learn to use unicode.mp474.37MB
  • 23 - Learning objectives.mp422.45MB
  • 24 - 5.1 Use lists and tuples.mp4369.96MB
  • 25 - 5.2 Explore dictionaries.mp4213.33MB
  • 26 - 5.3 Dive into sets.mp483.03MB
  • 27 - 5.4 Work with the numpy array.mp4234.44MB
  • 28 - 5.5 Use the Pandas DataFrame.mp4116.78MB
  • 29 - 5.6 Use the Pandas Series.mp471.62MB
  • 30 - Learning objectives.mp424MB
  • 31 - 6.1 Convert lists to dicts and back.mp474.45MB
  • 32 - 6.2 Convert dicts to Pandas Dataframe.mp4104.57MB
  • 33 - 6.3 Convert characters to integers and back.mp435.73MB
  • 34 - 6.4 Convert between hexadecimal, binary, and floats.mp4101.36MB
  • 35 - Learning objectives.mp424.93MB
  • 36 - 7.1 Learn to loop with for loops.mp444.92MB
  • 37 - 7.2 Repeat with while loops.mp450.23MB
  • 38 - 7.3 Learn to handle exceptions.mp4111.94MB
  • 39 - 7.4 Use conditionals.mp4168.25MB
  • 40 - Learning objectives.mp422.46MB
  • 41 - 8.1 Write and use functions.mp4206.47MB
  • 42 - 8.2 Learn to use decorators.mp4210.94MB
  • 43 - 8.3 Compose closure functions.mp4132.86MB
  • 44 - 8.4 Use lambdas.mp4106.23MB
  • 45 - 8.5 Advanced Use of Functions.mp4319.02MB
  • 46 - Learning objectives.mp433.79MB
  • 47 - 9.1 Learn NumPy.mp4287.95MB
  • 48 - 9.2 Learn SciPy.mp4664.99MB
  • 49 - 9.3 Learn Pandas.mp4335.61MB
  • 50 - 9.4 Learn TensorFlow.mp4341.9MB
  • 51 - 9.5 Use Seaborn for 2D plots.mp4261.65MB
  • 52 - 9.6 Use Plotly for interactive plots.mp4262.06MB
  • 53 - 9.7 Specialized Visualization Libraries.mp4241.69MB
  • 54 - 9.8 Learn Natural Language Processing Libraries.mp4124.95MB
  • 55 - Learning objectives.mp427.7MB
  • 56 - 10.1 Understand functional programming.mp4151.13MB
  • 57 - 10.2 Apply functions to data science workflows.mp447.12MB
  • 58 - 10.3 Use map_reduce_filter.mp495.23MB
  • 59 - 10.4 Use list comprehensions.mp498.27MB
  • 60 - 10.5 Use dictionary comprehensions.mp415.45MB
  • 61 - Learning objectives.mp417.83MB
  • 62 - 11.1 Use generators.mp469.4MB
  • 63 - 11.2 Design generator pipelines.mp4141.25MB
  • 64 - 11.3 Implement lazy evaluation functions.mp459.14MB
  • 65 - Learning objectives.mp420.97MB
  • 66 - 12.1 Perform simple pattern matching.mp497.05MB
  • 67 - 12.2 Use regular expressions.mp4284.59MB
  • 68 - 12.3 Learn text processing techniques - Beautiful Soup.mp487.6MB
  • 69 - Learning objectives.mp418.2MB
  • 70 - 13.1 Sort in Python.mp4186.66MB
  • 71 - 13.2 Create custom sorting functions.mp4229.33MB
  • 72 - 13.3 Sort in Pandas.mp4301.95MB
  • 73 - Learning objectives.mp422.1MB
  • 74 - 14.1 Read and write files - file, pickle, CSV, JSON.mp4214.71MB
  • 75 - 14.2 Read and write with Pandas - CSV, JSON.mp4336.5MB
  • 76 - 14.3 Read and write using web resources (requests, boto, github).mp4110.86MB
  • 77 - 14.4 Use function-based concurrency.mp4608.14MB
  • 78 - Learning objectives.mp420.91MB
  • 79 - 15.1 Share with Github.mp4358.09MB
  • 80 - 15.2 Create Kaggle Kernels.mp4207.48MB
  • 81 - 15.3 Collaborate with Colab.mp4125.18MB
  • 82 - 15.4 Post public graphs with Plotly.mp4103.5MB
  • 83 - Learning Objectives.mp428.71MB
  • 84 - 16.1 PyTest.mp4372.92MB
  • 85 - 16.2 Visual Studio Code.mp4364.64MB
  • 86 - 16.3 Vim.mp4136.81MB
  • 87 - 16.4 Ludwig (Open Source AutoML).mp4146.48MB
  • 88 - 16.5 Sklearn Algorithm Cheatsheet.mp4104.05MB
  • 89 - 16.6 Recommendations.mp447.75MB