本站已收录 番号和无损神作磁力链接/BT种子 

[FreeCourseLab.com] Udemy - Advanced AI Deep Reinforcement Learning in Python

种子简介

种子名称: [FreeCourseLab.com] Udemy - Advanced AI Deep Reinforcement Learning in Python
文件类型: 视频
文件数目: 72个文件
文件大小: 1.79 GB
收录时间: 2020-10-23 03:29
已经下载: 3
资源热度: 224
最近下载: 2025-1-5 03:46

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:a8c32b6ad2744e9141cda36ab8efc937cdbda3cd&dn=[FreeCourseLab.com] Udemy - Advanced AI Deep Reinforcement Learning in Python 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[FreeCourseLab.com] Udemy - Advanced AI Deep Reinforcement Learning in Python.torrent
  • 1. Introduction and Logistics/1. Introduction and Outline.mp415.83MB
  • 1. Introduction and Logistics/2. Where to get the Code.mp45.2MB
  • 1. Introduction and Logistics/3. How to Succeed in this Course.mp43.3MB
  • 1. Introduction and Logistics/4. Tensorflow or Theano - Your Choice!.mp418.93MB
  • 2. Background Review/1. Review Intro.mp44.2MB
  • 2. Background Review/2. Review of Markov Decision Processes.mp412.31MB
  • 2. Background Review/3. Review of Dynamic Programming.mp46.51MB
  • 2. Background Review/4. Review of Monte Carlo Methods.mp46.18MB
  • 2. Background Review/5. Review of Temporal Difference Learning.mp47.16MB
  • 2. Background Review/6. Review of Approximation Methods for Reinforcement Learning.mp43.67MB
  • 2. Background Review/7. Review of Deep Learning.mp411.05MB
  • 3. OpenAI Gym and Basic Reinforcement Learning Techniques/1. OpenAI Gym Tutorial.mp48.67MB
  • 3. OpenAI Gym and Basic Reinforcement Learning Techniques/10. Theano Warmup.mp45.83MB
  • 3. OpenAI Gym and Basic Reinforcement Learning Techniques/11. Tensorflow Warmup.mp45.07MB
  • 3. OpenAI Gym and Basic Reinforcement Learning Techniques/12. Plugging in a Neural Network.mp45.92MB
  • 3. OpenAI Gym and Basic Reinforcement Learning Techniques/13. OpenAI Gym Section Summary.mp45.32MB
  • 3. OpenAI Gym and Basic Reinforcement Learning Techniques/2. Random Search.mp410.29MB
  • 3. OpenAI Gym and Basic Reinforcement Learning Techniques/3. Saving a Video.mp44.54MB
  • 3. OpenAI Gym and Basic Reinforcement Learning Techniques/4. CartPole with Bins (Theory).mp46.02MB
  • 3. OpenAI Gym and Basic Reinforcement Learning Techniques/5. CartPole with Bins (Code).mp414.7MB
  • 3. OpenAI Gym and Basic Reinforcement Learning Techniques/6. RBF Neural Networks.mp416.52MB
  • 3. OpenAI Gym and Basic Reinforcement Learning Techniques/7. RBF Networks with Mountain Car (Code).mp413.75MB
  • 3. OpenAI Gym and Basic Reinforcement Learning Techniques/8. RBF Networks with CartPole (Theory).mp43.05MB
  • 3. OpenAI Gym and Basic Reinforcement Learning Techniques/9. RBF Networks with CartPole (Code).mp48.91MB
  • 4. TD Lambda/1. N-Step Methods.mp45.03MB
  • 4. TD Lambda/2. N-Step in Code.mp49.47MB
  • 4. TD Lambda/3. TD Lambda.mp411.78MB
  • 4. TD Lambda/4. TD Lambda in Code.mp47.62MB
  • 4. TD Lambda/5. TD Lambda Summary.mp43.65MB
  • 5. Policy Gradients/1. Policy Gradient Methods.mp417.95MB
  • 5. Policy Gradients/10. Policy Gradient Section Summary.mp43.33MB
  • 5. Policy Gradients/2. Policy Gradient in TensorFlow for CartPole.mp417.98MB
  • 5. Policy Gradients/3. Policy Gradient in Theano for CartPole.mp413.44MB
  • 5. Policy Gradients/4. Continuous Action Spaces.mp46.58MB
  • 5. Policy Gradients/5. Mountain Car Continuous Specifics.mp46.5MB
  • 5. Policy Gradients/6. Mountain Car Continuous Theano.mp419.07MB
  • 5. Policy Gradients/7. Mountain Car Continuous Tensorflow.mp420.09MB
  • 5. Policy Gradients/8. Mountain Car Continuous Tensorflow (v2).mp418.78MB
  • 5. Policy Gradients/9. Mountain Car Continuous Theano (v2).mp422.19MB
  • 6. Deep Q-Learning/1. Deep Q-Learning Intro.mp45.9MB
  • 6. Deep Q-Learning/2. Deep Q-Learning Techniques.mp414.45MB
  • 6. Deep Q-Learning/3. Deep Q-Learning in Tensorflow for CartPole.mp414.99MB
  • 6. Deep Q-Learning/4. Deep Q-Learning in Theano for CartPole.mp413.77MB
  • 6. Deep Q-Learning/5. Additional Implementation Details for Atari.mp48.51MB
  • 6. Deep Q-Learning/6. Deep Q-Learning in Tensorflow for Breakout.mp415.76MB
  • 6. Deep Q-Learning/7. Deep Q-Learning in Theano for Breakout.mp420.04MB
  • 6. Deep Q-Learning/8. Partially Observable MDPs.mp47.6MB
  • 6. Deep Q-Learning/9. Deep Q-Learning Section Summary.mp410.4MB
  • 7. A3C/1. A3C - Theory and Outline.mp471.76MB
  • 7. A3C/2. A3C - Code pt 1 (Warmup).mp450.09MB
  • 7. A3C/3. A3C - Code pt 2.mp457.61MB
  • 7. A3C/4. A3C - Code pt 3.mp484.52MB
  • 7. A3C/5. A3C - Code pt 4.mp4184.35MB
  • 7. A3C/6. A3C - Section Summary.mp48.85MB
  • 7. A3C/7. Course Summary.mp49.46MB
  • 8. Theano and Tensorflow Basics Review/1. (Review) Theano Basics.mp493.4MB
  • 8. Theano and Tensorflow Basics Review/2. (Review) Theano Neural Network in Code.mp487MB
  • 8. Theano and Tensorflow Basics Review/3. (Review) Tensorflow Basics.mp481.43MB
  • 8. Theano and Tensorflow Basics Review/4. (Review) Tensorflow Neural Network in Code.mp497.29MB
  • 9. Appendix/1. What is the Appendix.mp45.46MB
  • 9. Appendix/10. Python 2 vs Python 3.mp47.84MB
  • 9. Appendix/11. Is Theano Dead.mp417.82MB
  • 9. Appendix/12. What order should I take your courses in (part 1).mp429.33MB
  • 9. Appendix/13. What order should I take your courses in (part 2).mp437.62MB
  • 9. Appendix/2. Where to get Udemy coupons and FREE deep learning material.mp44.03MB
  • 9. Appendix/3. Windows-Focused Environment Setup 2018.mp4186.16MB
  • 9. Appendix/4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp443.92MB
  • 9. Appendix/5. How to Code by Yourself (part 1).mp424.53MB
  • 9. Appendix/6. How to Code by Yourself (part 2).mp414.8MB
  • 9. Appendix/7. How to Succeed in this Course (Long Version).mp418.32MB
  • 9. Appendix/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp438.96MB
  • 9. Appendix/9. Proof that using Jupyter Notebook is the same as not using it.mp478.25MB