本站已收录 番号和无损神作磁力链接/BT种子 

[FreeCourseLab.com] Udemy - Artificial Intelligence II - Neural Networks in Java

种子简介

种子名称: [FreeCourseLab.com] Udemy - Artificial Intelligence II - Neural Networks in Java
文件类型: 视频
文件数目: 59个文件
文件大小: 815.93 MB
收录时间: 2022-12-11 23:05
已经下载: 3
资源热度: 221
最近下载: 2024-12-21 05:20

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:ad273397f7b43d6079472c87a6b97aa142aebb7d&dn=[FreeCourseLab.com] Udemy - Artificial Intelligence II - Neural Networks in Java 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[FreeCourseLab.com] Udemy - Artificial Intelligence II - Neural Networks in Java.torrent
  • 1. Introduction/1. Introduction.mp46.95MB
  • 10. Classification - Iris Dataset/1. About the Iris dataset.mp47.12MB
  • 10. Classification - Iris Dataset/2. Constructing the neural network.mp48.03MB
  • 10. Classification - Iris Dataset/3. Testing the neural network.mp434.16MB
  • 11. Optical Character Recognition (OCR)/1. Optical character recognition theory.mp47.88MB
  • 11. Optical Character Recognition (OCR)/2. Installing paint.net.mp45.15MB
  • 11. Optical Character Recognition (OCR)/3. Transform an image into numerical data.mp49.83MB
  • 11. Optical Character Recognition (OCR)/4. Creating the datasets.mp47.64MB
  • 11. Optical Character Recognition (OCR)/5. OCR with neural network.mp443.94MB
  • 2. Neural Networks Introduction/1. Axons and neurons in the human brain.mp419.29MB
  • 2. Neural Networks Introduction/2. Modeling human brain.mp493.92MB
  • 2. Neural Networks Introduction/3. Learning paradigms.mp46.86MB
  • 2. Neural Networks Introduction/4. Artificial neurons - the model.mp416.55MB
  • 2. Neural Networks Introduction/5. Artificial neurons - activations functions.mp414.25MB
  • 2. Neural Networks Introduction/7. Artificial neurons - an example.mp411.37MB
  • 2. Neural Networks Introduction/8. Neural networks - the big picture.mp410.77MB
  • 2. Neural Networks Introduction/9. Applications of neural networks.mp45.23MB
  • 3. Hopfield Neural Network/1. Hopfield neural network introduction.mp411.76MB
  • 3. Hopfield Neural Network/2. Hopfield network energy.mp49.35MB
  • 3. Hopfield Neural Network/3. Hopfield neural network training and learning.mp411.55MB
  • 3. Hopfield Neural Network/4. Hopfield neural network problems.mp47.19MB
  • 3. Hopfield Neural Network/5. Hopfield neural network example.mp413.17MB
  • 3. Hopfield Neural Network/6. Hopfield network implementation I - utils.mp49.39MB
  • 3. Hopfield Neural Network/7. Hopfield network implementation II - matrix operations.mp419.06MB
  • 3. Hopfield Neural Network/8. Hopfield network implementation III - network.mp418.62MB
  • 3. Hopfield Neural Network/9. Hopfield network implementation IV - running the application.mp48.77MB
  • 4. Neural Networks With Backpropagation Theory/1. Feedforward neural networks.mp418.41MB
  • 4. Neural Networks With Backpropagation Theory/10. Backpropagation.mp412.67MB
  • 4. Neural Networks With Backpropagation Theory/11. Backpropagation II.mp44.67MB
  • 4. Neural Networks With Backpropagation Theory/13. Resilient propagation.mp418.56MB
  • 4. Neural Networks With Backpropagation Theory/14. Applications of neural networks I - character recognition.mp48.77MB
  • 4. Neural Networks With Backpropagation Theory/15. Applications of neural networks II - stock market forecast.mp49.52MB
  • 4. Neural Networks With Backpropagation Theory/16. Deep learning.mp49.46MB
  • 4. Neural Networks With Backpropagation Theory/2. Optimization - cost function.mp425.89MB
  • 4. Neural Networks With Backpropagation Theory/4. Simplified feedforward network.mp419.42MB
  • 4. Neural Networks With Backpropagation Theory/5. Feedforward neural network topology.mp414.72MB
  • 4. Neural Networks With Backpropagation Theory/6. The learning algorithm.mp413.25MB
  • 4. Neural Networks With Backpropagation Theory/7. Error calculation.mp413.73MB
  • 4. Neural Networks With Backpropagation Theory/8. Gradient calculation I - output layer.mp420.27MB
  • 4. Neural Networks With Backpropagation Theory/9. Gradient calculation II - hidden layer.mp49.17MB
  • 5. Types of Neural Networks/1. Types of neural networks.mp45.48MB
  • 6. Single Perceptron Model/1. Perceptron model training.mp44.67MB
  • 6. Single Perceptron Model/2. Perceptron model implementation I.mp411.54MB
  • 6. Single Perceptron Model/3. Perceptron model implementation II.mp412.83MB
  • 6. Single Perceptron Model/4. Perceptron model implementation III.mp413.67MB
  • 6. Single Perceptron Model/5. Trying to solve XOR problem.mp44.5MB
  • 6. Single Perceptron Model/6. Conclusion linearity and hidden layers.mp46.73MB
  • 7. Backpropagation Implementation/1. Structure of the feedforward network.mp413.12MB
  • 7. Backpropagation Implementation/2. Backpropagation implementation I - activation function.mp49.85MB
  • 7. Backpropagation Implementation/3. Backpropagation implementation II - NeuralNetwork.mp418.3MB
  • 7. Backpropagation Implementation/4. Backpropagation implementation III - Layer.mp412.07MB
  • 7. Backpropagation Implementation/5. Backpropagation implementation IV - run.mp416.42MB
  • 7. Backpropagation Implementation/6. Backpropagation implementation V - train.mp416.02MB
  • 8. Logical Operators/1. Logical operators introduction.mp44.62MB
  • 8. Logical Operators/2. Running the neural network AND.mp417.96MB
  • 8. Logical Operators/3. Running the neural network OR.mp48.06MB
  • 8. Logical Operators/4. Running the neural network XOR.mp45.56MB
  • 9. Clustering/1. Clustering with neural networks I.mp44.76MB
  • 9. Clustering/2. Clustering with neural networks II.mp413.49MB