本站已收录 番号和无损神作磁力链接/BT种子 

[UdemyCourseDownloader] Complete linear algebra theory and implementation

种子简介

种子名称: [UdemyCourseDownloader] Complete linear algebra theory and implementation
文件类型: 视频
文件数目: 138个文件
文件大小: 6.46 GB
收录时间: 2019-9-7 01:53
已经下载: 3
资源热度: 284
最近下载: 2024-11-8 08:24

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:ade47c01e05ebfc55605e5bb03e8d4195e3448b5&dn=[UdemyCourseDownloader] Complete linear algebra theory and implementation 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[UdemyCourseDownloader] Complete linear algebra theory and implementation.torrent
  • 11. Least-squares for model-fitting in statistics/8. Least-squares application 2.mp4133.29MB
  • 1. Introductions/1. What is linear algebra.mp464.83MB
  • 1. Introductions/2. Linear algebra applications.mp429.58MB
  • 1. Introductions/3. How best to learn from this course.mp426.98MB
  • 1. Introductions/4. Using MATLAB, Octave, or Python in this course.mp421.2MB
  • 1. Introductions/5. Leaving reviews, course coupons.mp417.84MB
  • 2. Vectors/2. Algebraic and geometric interpretations of vectors.mp447.98MB
  • 2. Vectors/3. Vector addition and subtraction.mp425.82MB
  • 2. Vectors/4. Vector-scalar multiplication.mp429.42MB
  • 2. Vectors/5. Vector-vector multiplication the dot product.mp432.38MB
  • 2. Vectors/6. Code challenge dot products with matrix columns.mp423.05MB
  • 2. Vectors/7. Vector length.mp423.82MB
  • 2. Vectors/9. Dot product geometry sign and orthogonality.mp477.18MB
  • 2. Vectors/12. Code challenge dot product sign and scalar multiplication.mp444.81MB
  • 2. Vectors/13. Code challenge is the dot product commutative.mp427.52MB
  • 2. Vectors/14. Vector Hadamard multiplication.mp412.14MB
  • 2. Vectors/15. Outer product.mp442.03MB
  • 2. Vectors/16. Vector cross product.mp444.38MB
  • 2. Vectors/17. Vectors with complex numbers.mp432.89MB
  • 2. Vectors/18. Hermitian transpose (a.k.a. conjugate transpose).mp455.5MB
  • 2. Vectors/19. Interpreting and creating unit vectors.mp426.54MB
  • 2. Vectors/20. Code challenge dot products with unit vectors.mp444.88MB
  • 2. Vectors/21. Dimensions and fields in linear algebra.mp438.74MB
  • 2. Vectors/22. Subspaces.mp469.59MB
  • 2. Vectors/23. Subspaces vs. subsets.mp429.06MB
  • 2. Vectors/24. Span.mp459.92MB
  • 2. Vectors/26. Linear independence.mp475.69MB
  • 2. Vectors/27. Basis.mp450.94MB
  • 3. Introduction to matrices/2. Matrix terminology and dimensionality.mp440.84MB
  • 3. Introduction to matrices/4. A zoo of matrices.mp455.12MB
  • 3. Introduction to matrices/6. Matrix addition and subtraction.mp427.07MB
  • 3. Introduction to matrices/7. Matrix-scalar multiplication.mp47.97MB
  • 3. Introduction to matrices/8. Code challenge is matrix-scalar multiplication a linear operation.mp425.27MB
  • 3. Introduction to matrices/9. Transpose.mp431.32MB
  • 3. Introduction to matrices/10. Complex matrices.mp46.77MB
  • 3. Introduction to matrices/12. Diagonal and trace.mp427.24MB
  • 3. Introduction to matrices/13. Code challenge linearity of trace.mp436.24MB
  • 4. Matrix multiplications/2. Introduction to standard matrix multiplication.mp445.31MB
  • 4. Matrix multiplications/3. Four ways to think about matrix multiplication.mp437.76MB
  • 4. Matrix multiplications/4. Code challenge matrix multiplication by layering.mp435.63MB
  • 4. Matrix multiplications/5. Matrix multiplication with a diagonal matrix.mp418.55MB
  • 4. Matrix multiplications/6. Order-of-operations on matrices.mp436.81MB
  • 4. Matrix multiplications/7. Matrix-vector multiplication.mp475.83MB
  • 4. Matrix multiplications/9. 2D transformation matrices.mp452.49MB
  • 4. Matrix multiplications/10. Code challenge Pure and impure rotation matrices.mp465.02MB
  • 4. Matrix multiplications/11. Additive and multiplicative matrix identities.mp425.26MB
  • 4. Matrix multiplications/12. Additive and multiplicative symmetric matrices.mp454.23MB
  • 4. Matrix multiplications/13. Hadamard (element-wise) multiplication.mp411.93MB
  • 4. Matrix multiplications/15. Code challenge symmetry of combined symmetric matrices.mp434.19MB
  • 4. Matrix multiplications/16. Multiplication of two symmetric matrices.mp449.74MB
  • 4. Matrix multiplications/17. Code challenge standard and Hadamard multiplication for diagonal matrices.mp419.94MB
  • 4. Matrix multiplications/18. Frobenius dot product.mp445.14MB
  • 4. Matrix multiplications/19. What about matrix division.mp414.08MB
  • 5. Matrix rank/2. Rank concepts, terms, and applications.mp462.87MB
  • 5. Matrix rank/4. Computing rank theory and practice.mp490.33MB
  • 5. Matrix rank/5. Rank of added and multiplied matrices.mp458.89MB
  • 5. Matrix rank/7. Code challenge scalar multiplication and rank.mp455.71MB
  • 5. Matrix rank/8. Code challenge reduced-rank matrix via multiplication.mp434.47MB
  • 5. Matrix rank/9. Rank of A^TA and AA^T.mp445.03MB
  • 5. Matrix rank/10. Code challenge rank of multiplied and summed matrices.mp429.96MB
  • 5. Matrix rank/11. Making a matrix full-rank by shifting.mp459.9MB
  • 5. Matrix rank/12. Code challenge is this vector in the span of this set.mp424.39MB
  • 6. Matrix spaces/2. Column space of a matrix.mp486.5MB
  • 6. Matrix spaces/3. Row space of a matrix.mp419.31MB
  • 6. Matrix spaces/4. Null space and left null space of a matrix.mp464.13MB
  • 6. Matrix spaces/5. Columnleft-null and rownull spaces are orthogonal.mp430.99MB
  • 6. Matrix spaces/6. Dimensions of columnrownull spaces.mp426.83MB
  • 6. Matrix spaces/7. Example of the four subspaces.mp450.25MB
  • 6. Matrix spaces/8. More on Ax=b and Ax=0.mp428.47MB
  • 7. Solving systems of equations/2. Systems of equations algebra and geometry.mp499.72MB
  • 7. Solving systems of equations/3. Converting systems of equations to matrix equations.mp429.43MB
  • 7. Solving systems of equations/4. Gaussian elimination.mp461.61MB
  • 7. Solving systems of equations/5. Echelon form and pivots.mp426.42MB
  • 7. Solving systems of equations/6. Reduced row echelon form.mp461.34MB
  • 7. Solving systems of equations/7. Code challenge RREF of matrices with different sizes and ranks.mp439.28MB
  • 7. Solving systems of equations/8. Matrix spaces after row reduction.mp439.52MB
  • 8. Matrix determinant/2. Determinant concept and applications.mp448.01MB
  • 8. Matrix determinant/3. Code challenge determinant of small and large singular matrices.mp425.04MB
  • 8. Matrix determinant/4. Determinant of a 2x2 matrix.mp427.45MB
  • 8. Matrix determinant/5. Determinant of a 3x3 matrix.mp451.56MB
  • 8. Matrix determinant/6. Code challenge determinant of shifted matrices.mp462.47MB
  • 8. Matrix determinant/7. Find matrix values for a given determinant.mp420.6MB
  • 9. Matrix inverse/2. Matrix inverse Concept and applications.mp454.13MB
  • 9. Matrix inverse/3. Inverse of a 2x2 matrix.mp426.55MB
  • 9. Matrix inverse/4. The MCA algorithm to compute the inverse.mp452.46MB
  • 9. Matrix inverse/5. Computing the inverse via row reduction.mp485.53MB
  • 9. Matrix inverse/6. Code challenge inverse of a diagonal matrix.mp437.18MB
  • 9. Matrix inverse/7. Left inverse and right inverse.mp476.67MB
  • 9. Matrix inverse/8. Proof the inverse is unique.mp414.05MB
  • 9. Matrix inverse/9. Pseudo-inverse, part 1.mp456.05MB
  • 9. Matrix inverse/10. Code challenge pseudoinverse of invertible matrices.mp413.36MB
  • 10. Projections and orthogonalization/2. Projections in R^2.mp452.35MB
  • 10. Projections and orthogonalization/3. Projections in R^N.mp475.55MB
  • 10. Projections and orthogonalization/4. Orthogonal and parallel vector components.mp447.44MB
  • 10. Projections and orthogonalization/5. Code challenge decompose vector to orthogonal components.mp447.57MB
  • 10. Projections and orthogonalization/6. Orthogonal matrices.mp455.44MB
  • 10. Projections and orthogonalization/7. Gram-Schmidt and QR decomposition.mp467.62MB
  • 10. Projections and orthogonalization/8. Matrix inverse via QR decomposition.mp413.39MB
  • 10. Projections and orthogonalization/9. Code challenge Inverse via QR.mp447.85MB
  • 11. Least-squares for model-fitting in statistics/2. Introduction to least-squares.mp4106.77MB
  • 11. Least-squares for model-fitting in statistics/3. Least-squares via left inverse.mp449.1MB
  • 11. Least-squares for model-fitting in statistics/4. Least-squares via orthogonal projection.mp434.74MB
  • 11. Least-squares for model-fitting in statistics/5. Least-squares via row-reduction.mp446.89MB
  • 11. Least-squares for model-fitting in statistics/6. Model-predicted values and residuals.mp430.92MB
  • 11. Least-squares for model-fitting in statistics/7. Least-squares application 1.mp481.33MB
  • 12. Eigendecomposition/2. What are eigenvalues and eigenvectors.mp485.51MB
  • 12. Eigendecomposition/3. Finding eigenvalues.mp473.11MB
  • 12. Eigendecomposition/4. Shortcut for eigenvalues of a 2x2 matrix.mp48.63MB
  • 12. Eigendecomposition/5. Code challenge eigenvalues of diagonal and triangular matrices.mp425.62MB
  • 12. Eigendecomposition/6. Code challenge eigenvalues of random matrices.mp439.64MB
  • 12. Eigendecomposition/7. Finding eigenvectors.mp464.81MB
  • 12. Eigendecomposition/8. Eigendecomposition by hand two examples.mp451.82MB
  • 12. Eigendecomposition/9. Diagonalization.mp447.37MB
  • 12. Eigendecomposition/10. Matrix powers via diagonalization.mp499.58MB
  • 12. Eigendecomposition/11. Eigenvectors of distinct eigenvalues.mp455.81MB
  • 12. Eigendecomposition/12. Eigenvectors of repeated eigenvalues.mp464.79MB
  • 12. Eigendecomposition/13. Eigendecomposition of symmetric matrices.mp473.79MB
  • 12. Eigendecomposition/14. Eigendecomposition of singular matrices.mp415.75MB
  • 12. Eigendecomposition/15. Code challenge trace and determinant, eigenvalues sum and product.mp424.12MB
  • 12. Eigendecomposition/16. Generalized eigendecomposition.mp461.91MB
  • 13. Singular value decomposition/2. Singular value decomposition (SVD).mp474.4MB
  • 13. Singular value decomposition/3. Code challenge SVD vs. eigendecomposition for square symmetric matrices.mp479.2MB
  • 13. Singular value decomposition/4. SVD and the four subspaces.mp437.52MB
  • 13. Singular value decomposition/5. Spectral theory of matrices.mp4116.58MB
  • 13. Singular value decomposition/6. SVD for low-rank approximations.mp467.66MB
  • 13. Singular value decomposition/7. Convert singular values to percent variance.mp472.94MB
  • 13. Singular value decomposition/8. SVD, matrix inverse, and pseudoinverse.mp449.77MB
  • 13. Singular value decomposition/9. Condition number of a matrix.mp452.99MB
  • 13. Singular value decomposition/10. Code challenge Create matrix with desired condition number.mp478.72MB
  • 14. Quadratic form and definiteness/2. The quadratic form in algebra.mp465.98MB
  • 14. Quadratic form and definiteness/3. The quadratic form in geometry.mp464.71MB
  • 14. Quadratic form and definiteness/4. The normalized quadratic form.mp431.77MB
  • 14. Quadratic form and definiteness/5. Code challenge Visualize the normalized quadratic form.mp481.33MB
  • 14. Quadratic form and definiteness/6. Eigenvectors and the quadratic form surface.mp445.26MB
  • 14. Quadratic form and definiteness/7. Application of the normalized quadratic form PCA.mp4130.97MB
  • 14. Quadratic form and definiteness/8. Quadratic form of generalized eigendecomposition.mp465.29MB
  • 14. Quadratic form and definiteness/9. Matrix definiteness, geometry, and eigenvalues.mp453.06MB
  • 14. Quadratic form and definiteness/10. Proof A^TA is always positive (semi)definite.mp431.34MB