种子简介
种子名称:
GetFreeCourses.Me-Udemy-Cutting-Edge AI Deep Reinforcement Learning in Python
文件类型:
视频
文件数目:
48个文件
文件大小:
3.31 GB
收录时间:
2020-6-22 22:26
已经下载:
3次
资源热度:
314
最近下载:
2025-1-16 02:51
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:b205e6bff8163ad0add4739f7ebe744dba349023&dn=GetFreeCourses.Me-Udemy-Cutting-Edge AI Deep Reinforcement Learning in Python
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
GetFreeCourses.Me-Udemy-Cutting-Edge AI Deep Reinforcement Learning in Python.torrent
1. Welcome/1. Introduction.mp429.55MB
1. Welcome/2. Outline.mp454.25MB
1. Welcome/3. Where to get the code.mp424.45MB
2. Review of Fundamental Reinforcement Learning Concepts/1. Review Section Introduction.mp418.88MB
2. Review of Fundamental Reinforcement Learning Concepts/2. The Explore-Exploit Dilemma.mp471.63MB
2. Review of Fundamental Reinforcement Learning Concepts/3. Markov Decision Processes (MDPs).mp4108.66MB
2. Review of Fundamental Reinforcement Learning Concepts/4. Monte Carlo Methods.mp432.07MB
2. Review of Fundamental Reinforcement Learning Concepts/5. Temporal Difference Learning (TD).mp478.57MB
2. Review of Fundamental Reinforcement Learning Concepts/6. OpenAI Gym Warmup.mp449.72MB
2. Review of Fundamental Reinforcement Learning Concepts/7. Review Section Summary.mp431.17MB
3. A2C (Advantage Actor-Critic)/1. A2C Section Introduction.mp461.3MB
3. A2C (Advantage Actor-Critic)/10. A2C.mp4192.28MB
3. A2C (Advantage Actor-Critic)/11. A2C Section Summary.mp432.72MB
3. A2C (Advantage Actor-Critic)/2. A2C Theory (part 1).mp496.21MB
3. A2C (Advantage Actor-Critic)/3. A2C Theory (part 2).mp432.59MB
3. A2C (Advantage Actor-Critic)/4. A2C Theory (part 3).mp414.22MB
3. A2C (Advantage Actor-Critic)/5. A2C Demo.mp427.42MB
3. A2C (Advantage Actor-Critic)/6. A2C Code - Rough Sketch.mp428.49MB
3. A2C (Advantage Actor-Critic)/7. Multiple Processes.mp470.09MB
3. A2C (Advantage Actor-Critic)/8. Environment Wrappers.mp4128.58MB
3. A2C (Advantage Actor-Critic)/9. Convolutional Neural Network.mp445.66MB
4. DDPG (Deep Deterministic Policy Gradient)/1. DDPG Section Introduction.mp423.92MB
4. DDPG (Deep Deterministic Policy Gradient)/2. Deep Q-Learning (DQN) Review.mp445.16MB
4. DDPG (Deep Deterministic Policy Gradient)/3. DDPG Theory.mp480.68MB
4. DDPG (Deep Deterministic Policy Gradient)/4. MuJoCo.mp4110.45MB
4. DDPG (Deep Deterministic Policy Gradient)/5. DDPG Code (part 1).mp4193.58MB
4. DDPG (Deep Deterministic Policy Gradient)/6. DDPG Code (part 2).mp464.82MB
4. DDPG (Deep Deterministic Policy Gradient)/7. DDPG Section Summary.mp417.6MB
5. ES (Evolution Strategies)/1. ES Section Introduction.mp444.86MB
5. ES (Evolution Strategies)/2. ES Theory.mp4108.21MB
5. ES (Evolution Strategies)/3. Notes on Evolution Strategies.mp453.1MB
5. ES (Evolution Strategies)/4. ES for Optimizing a Function.mp446.51MB
5. ES (Evolution Strategies)/5. ES for Supervised Learning.mp455.16MB
5. ES (Evolution Strategies)/6. Flappy Bird.mp460.92MB
5. ES (Evolution Strategies)/7. ES for Flappy Bird in Code.mp4142.23MB
5. ES (Evolution Strategies)/8. ES for MuJoCo in Code.mp468.63MB
5. ES (Evolution Strategies)/9. ES Section Summary.mp428.64MB
6. Appendix FAQ/1. What is the Appendix.mp418.07MB
6. Appendix FAQ/10. What order should I take your courses in (part 1).mp499.39MB
6. Appendix FAQ/11. What order should I take your courses in (part 2).mp4139.37MB
6. Appendix FAQ/2. Windows-Focused Environment Setup 2018.mp4194.34MB
6. Appendix FAQ/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4167.01MB
6. Appendix FAQ/4. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4117.54MB
6. Appendix FAQ/5. How to Succeed in this Course (Long Version).mp439.26MB
6. Appendix FAQ/6. How to Code by Yourself (part 1).mp482.57MB
6. Appendix FAQ/7. How to Code by Yourself (part 2).mp456.7MB
6. Appendix FAQ/8. Proof that using Jupyter Notebook is the same as not using it.mp478.27MB
6. Appendix FAQ/9. Python 2 vs Python 3.mp418.98MB