本站已收录 番号和无损神作磁力链接/BT种子 

[FreeCoursesOnline.Me] [DataCamp] Data Manipulation with Python [FCO]

种子简介

种子名称: [FreeCoursesOnline.Me] [DataCamp] Data Manipulation with Python [FCO]
文件类型: 视频
文件数目: 65个文件
文件大小: 870.02 MB
收录时间: 2019-3-14 08:06
已经下载: 3
资源热度: 195
最近下载: 2025-1-26 00:07

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:b2b87ea9a765aceda53346d8ae56f0f52a0de6ae&dn=[FreeCoursesOnline.Me] [DataCamp] Data Manipulation with Python [FCO] 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[FreeCoursesOnline.Me] [DataCamp] Data Manipulation with Python [FCO].torrent
  • 01 - Pandas Foundation/01 - Data ingestion & inspection/ch1_1.mp434.17MB
  • 01 - Pandas Foundation/01 - Data ingestion & inspection/ch1_2.mp414.78MB
  • 01 - Pandas Foundation/01 - Data ingestion & inspection/ch1_3.mp424.47MB
  • 01 - Pandas Foundation/01 - Data ingestion & inspection/ch1_4.mp420.49MB
  • 01 - Pandas Foundation/02 - Exploratory data analysis/ch2_1.mp418.98MB
  • 01 - Pandas Foundation/02 - Exploratory data analysis/ch2_2.mp420.04MB
  • 01 - Pandas Foundation/02 - Exploratory data analysis/ch2_3.mp420.95MB
  • 01 - Pandas Foundation/03 - Time series in pandas/ch3_1.mp420.26MB
  • 01 - Pandas Foundation/03 - Time series in pandas/ch3_2.mp423.64MB
  • 01 - Pandas Foundation/03 - Time series in pandas/ch3_3.mp421.7MB
  • 01 - Pandas Foundation/03 - Time series in pandas/ch3_4.mp416.83MB
  • 01 - Pandas Foundation/04 - Case Study - Sunlight in Austin/ch4_1.mp49.84MB
  • 01 - Pandas Foundation/04 - Case Study - Sunlight in Austin/ch4_2.mp44.32MB
  • 01 - Pandas Foundation/04 - Case Study - Sunlight in Austin/ch4_3.mp43.64MB
  • 01 - Pandas Foundation/04 - Case Study - Sunlight in Austin/ch4_4.mp43.58MB
  • 01 - Pandas Foundation/DataSets/Stock data (messy).tsv775B
  • 02 - Manipulating DataFrames with pandas/01 - Extracting and transforming data/ch1_1.mp420.76MB
  • 02 - Manipulating DataFrames with pandas/01 - Extracting and transforming data/ch1_2.mp416.3MB
  • 02 - Manipulating DataFrames with pandas/01 - Extracting and transforming data/ch1_3.mp417.76MB
  • 02 - Manipulating DataFrames with pandas/01 - Extracting and transforming data/ch1_4.mp417.47MB
  • 02 - Manipulating DataFrames with pandas/02 - Advanced indexing/ch2_1.mp418.74MB
  • 02 - Manipulating DataFrames with pandas/02 - Advanced indexing/ch2_2.mp419.25MB
  • 02 - Manipulating DataFrames with pandas/03 - Rearranging and reshaping data/ch3_1.mp46.73MB
  • 02 - Manipulating DataFrames with pandas/03 - Rearranging and reshaping data/ch3_2.mp410.43MB
  • 02 - Manipulating DataFrames with pandas/03 - Rearranging and reshaping data/ch3_3.mp47.08MB
  • 02 - Manipulating DataFrames with pandas/03 - Rearranging and reshaping data/ch3_4.mp46.28MB
  • 02 - Manipulating DataFrames with pandas/04 - Grouping data/ch4_1.mp417.39MB
  • 02 - Manipulating DataFrames with pandas/04 - Grouping data/ch4_2.mp49.95MB
  • 02 - Manipulating DataFrames with pandas/04 - Grouping data/ch4_3.mp415.32MB
  • 02 - Manipulating DataFrames with pandas/04 - Grouping data/ch4_4.mp411.87MB
  • 02 - Manipulating DataFrames with pandas/05 - Bringing it all together/ch5_1.mp412.01MB
  • 02 - Manipulating DataFrames with pandas/05 - Bringing it all together/ch5_2.mp44.99MB
  • 02 - Manipulating DataFrames with pandas/05 - Bringing it all together/ch5_3.mp46.22MB
  • 02 - Manipulating DataFrames with pandas/05 - Bringing it all together/ch5_4.mp45.31MB
  • 02 - Manipulating DataFrames with pandas/05 - Bringing it all together/ch5_5.mp44.18MB
  • 03 - Merging DataFrames with pandas/01 - Preparing data/ch1_1.mp422.56MB
  • 03 - Merging DataFrames with pandas/01 - Preparing data/ch1_2.mp420.15MB
  • 03 - Merging DataFrames with pandas/01 - Preparing data/ch1_3.mp422.29MB
  • 03 - Merging DataFrames with pandas/02 - Concatenating data/ch2_1.mp412.57MB
  • 03 - Merging DataFrames with pandas/02 - Concatenating data/ch2_2.mp415.12MB
  • 03 - Merging DataFrames with pandas/02 - Concatenating data/ch2_3.mp414.03MB
  • 03 - Merging DataFrames with pandas/02 - Concatenating data/ch2_4.mp419.63MB
  • 03 - Merging DataFrames with pandas/03 - Merging data/ch3_1.mp421.03MB
  • 03 - Merging DataFrames with pandas/03 - Merging data/ch3_2_2.mp418.47MB
  • 03 - Merging DataFrames with pandas/03 - Merging data/ch3_3.mp412.89MB
  • 03 - Merging DataFrames with pandas/04 - Case Study - Summer Olympics/ch4_1.mp46.84MB
  • 03 - Merging DataFrames with pandas/04 - Case Study - Summer Olympics/ch4_2.mp45.43MB
  • 03 - Merging DataFrames with pandas/04 - Case Study - Summer Olympics/ch4_3.mp43.29MB
  • 03 - Merging DataFrames with pandas/04 - Case Study - Summer Olympics/ch4_4.mp42.23MB
  • 04 - Analyzing Police Activity with pandas/01 - Preparing the data for analysis/01 - chapter_1_introduction.mp436.99MB
  • 04 - Analyzing Police Activity with pandas/01 - Preparing the data for analysis/02 - chapter_1_using_proper_data_types.mp47.16MB
  • 04 - Analyzing Police Activity with pandas/01 - Preparing the data for analysis/03 - chapter_1_creating_a_datetime_index.mp47.29MB
  • 04 - Analyzing Police Activity with pandas/02 - Exploring the relationship between gender and policing/01 - chapter_2_do_the_genders_commit_different_violations.mp47.53MB
  • 04 - Analyzing Police Activity with pandas/02 - Exploring the relationship between gender and policing/02 - chapter_2_does_gender_affect_who_gets_a_ticket_for_speeding.mp46.7MB
  • 04 - Analyzing Police Activity with pandas/02 - Exploring the relationship between gender and policing/03 - chapter_2_does_gender_affect_who_gets_searched.mp48.03MB
  • 04 - Analyzing Police Activity with pandas/02 - Exploring the relationship between gender and policing/04 - chapter_2_does_gender_affect_who_gets_frisked_during_a_search.mp49.18MB
  • 04 - Analyzing Police Activity with pandas/03 - Visual exploratory data analysis/01 - chapter_3_does_time_of_day_affect_arrest_rate.mp47.15MB
  • 04 - Analyzing Police Activity with pandas/03 - Visual exploratory data analysis/02 - chapter_3_are_drug_related_stops_on_the_rise.mp47.73MB
  • 04 - Analyzing Police Activity with pandas/03 - Visual exploratory data analysis/03 - chapter_3_what_violations_are_caught_in_each_district.mp48.03MB
  • 04 - Analyzing Police Activity with pandas/03 - Visual exploratory data analysis/04 - chapter_3_how_long_might_you_be_stopped_for_a_violation.mp48.46MB
  • 04 - Analyzing Police Activity with pandas/04 - Analyzing the effect of weather on policing/01 - chapter_4_exploring_the_weather_dataset.mp439.7MB
  • 04 - Analyzing Police Activity with pandas/04 - Analyzing the effect of weather on policing/02 - chapter_4_categorizing_the_weather.mp49.01MB
  • 04 - Analyzing Police Activity with pandas/04 - Analyzing the effect of weather on policing/03 - chapter_4_merging_datasets.mp47.68MB
  • 04 - Analyzing Police Activity with pandas/04 - Analyzing the effect of weather on policing/04 - chapter_4_does_weather_affect_the_arrest_rate.mp48.22MB
  • 04 - Analyzing Police Activity with pandas/04 - Analyzing the effect of weather on policing/05 - chapter_4_conclusion.mp48.88MB