本站已收录 番号和无损神作磁力链接/BT种子 

[FreeAllCourse.Com] Udemy - Learning Python for Data Analysis and Visualization

种子简介

种子名称: [FreeAllCourse.Com] Udemy - Learning Python for Data Analysis and Visualization
文件类型: 视频
文件数目: 107个文件
文件大小: 3.89 GB
收录时间: 2020-9-18 04:41
已经下载: 3
资源热度: 173
最近下载: 2024-11-29 22:53

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:b4c263049672d9a936f68c6365aa10c6463ccd50&dn=[FreeAllCourse.Com] Udemy - Learning Python for Data Analysis and Visualization 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[FreeAllCourse.Com] Udemy - Learning Python for Data Analysis and Visualization.torrent
  • 1. Intro to Course and Python/1. Course Intro.mp413.25MB
  • 10. Machine Learning/1. Introduction to Machine Learning with SciKit Learn.mp446.17MB
  • 10. Machine Learning/10. Multi Class Classification Part 1 - Logistic Regression.mp467.85MB
  • 10. Machine Learning/11. Multi Class Classification Part 2 - k Nearest Neighbor.mp473.53MB
  • 10. Machine Learning/12. Support Vector Machines Part 1.mp464.93MB
  • 10. Machine Learning/13. Support Vector Machines - Part 2.mp485.84MB
  • 10. Machine Learning/14. Naive Bayes Part 1.mp435.69MB
  • 10. Machine Learning/15. Naive Bayes Part 2.mp465.48MB
  • 10. Machine Learning/16. Decision Trees and Random Forests.mp4152.94MB
  • 10. Machine Learning/17. Natural Language Processing Part 1.mp462.76MB
  • 10. Machine Learning/18. Natural Language Processing Part 2.mp459.73MB
  • 10. Machine Learning/19. Natural Language Processing Part 3.mp4148.91MB
  • 10. Machine Learning/2. Linear Regression Part 1.mp458.66MB
  • 10. Machine Learning/20. Natural Language Processing Part 4.mp4112.75MB
  • 10. Machine Learning/3. Linear Regression Part 2.mp452.52MB
  • 10. Machine Learning/4. Linear Regression Part 3.mp468.85MB
  • 10. Machine Learning/5. Linear Regression Part 4.mp478.64MB
  • 10. Machine Learning/6. Logistic Regression Part 1.mp471.8MB
  • 10. Machine Learning/7. Logistic Regression Part 2.mp451.81MB
  • 10. Machine Learning/8. Logistic Regression Part 3.mp439.67MB
  • 10. Machine Learning/9. Logistic Regression Part 4.mp497.94MB
  • 11. Appendix Statistics Overview/1. Intro to Appendix B.mp47.24MB
  • 11. Appendix Statistics Overview/10. Chi Square Test and Distribution.mp415.72MB
  • 11. Appendix Statistics Overview/11. Bayes Theorem.mp436.76MB
  • 11. Appendix Statistics Overview/2. Discrete Uniform Distribution.mp421.83MB
  • 11. Appendix Statistics Overview/3. Continuous Uniform Distribution.mp425.22MB
  • 11. Appendix Statistics Overview/4. Binomial Distribution.mp441.74MB
  • 11. Appendix Statistics Overview/5. Poisson Distribution.mp440.25MB
  • 11. Appendix Statistics Overview/6. Normal Distribution.mp419.43MB
  • 11. Appendix Statistics Overview/7. Sampling Techniques.mp422MB
  • 11. Appendix Statistics Overview/8. T-Distribution.mp416.35MB
  • 11. Appendix Statistics Overview/9. Hypothesis Testing and Confidence Intervals.mp478.87MB
  • 12. Appendix SQL and Python/1. Introduction to SQL with Python.mp443.76MB
  • 12. Appendix SQL and Python/2. SQL - SELECT,DISTINCT,WHERE,AND & OR.mp432.34MB
  • 12. Appendix SQL and Python/3. SQL WILDCARDS, ORDER BY, GROUP BY and Aggregate Functions.mp428.13MB
  • 13. Appendix Web Scraping with Python/1. Web Scraping Part 1.mp437.31MB
  • 13. Appendix Web Scraping with Python/2. Web Scraping Part 2.mp443.82MB
  • 14. Appendix Python Special Offers/1. Python Overview Part 1.mp434.46MB
  • 14. Appendix Python Special Offers/2. Python Overview Part 2.mp421.89MB
  • 14. Appendix Python Special Offers/3. Python Overview Part 3.mp419.93MB
  • 2. Setup/1. Installation Setup and Overview.mp424.37MB
  • 2. Setup/2. IDEs and Course Resources.mp430.35MB
  • 2. Setup/3. iPythonJupyter Notebook Overview.mp468.96MB
  • 3. Learning Numpy/2. Creating arrays.mp413.05MB
  • 3. Learning Numpy/3. Using arrays and scalars.mp47.94MB
  • 3. Learning Numpy/4. Indexing Arrays.mp426.16MB
  • 3. Learning Numpy/5. Array Transposition.mp47.54MB
  • 3. Learning Numpy/6. Universal Array Function.mp414.94MB
  • 3. Learning Numpy/7. Array Processing.mp441.03MB
  • 3. Learning Numpy/8. Array Input and Output.mp413.97MB
  • 4. Intro to Pandas/1. Series.mp424.75MB
  • 4. Intro to Pandas/10. Missing Data.mp418.93MB
  • 4. Intro to Pandas/11. Index Hierarchy.mp424.03MB
  • 4. Intro to Pandas/2. DataFrames.mp452.86MB
  • 4. Intro to Pandas/3. Index objects.mp49.23MB
  • 4. Intro to Pandas/4. Reindex.mp432.26MB
  • 4. Intro to Pandas/5. Drop Entry.mp49.25MB
  • 4. Intro to Pandas/6. Selecting Entries.mp418.12MB
  • 4. Intro to Pandas/7. Data Alignment.mp417.7MB
  • 4. Intro to Pandas/8. Rank and Sort.mp49.45MB
  • 4. Intro to Pandas/9. Summary Statistics.mp446.09MB
  • 5. Working with Data Part 1/1. Reading and Writing Text Files.mp424.81MB
  • 5. Working with Data Part 1/2. JSON with Python.mp48.99MB
  • 5. Working with Data Part 1/3. HTML with Python.mp413.46MB
  • 5. Working with Data Part 1/4. Microsoft Excel files with Python.mp47.63MB
  • 6. Working with Data Part 2/1. Merge.mp436.33MB
  • 6. Working with Data Part 2/10. Rename Index.mp410.09MB
  • 6. Working with Data Part 2/11. Binning.mp413.02MB
  • 6. Working with Data Part 2/12. Outliers.mp416.22MB
  • 6. Working with Data Part 2/13. Permutation.mp48.74MB
  • 6. Working with Data Part 2/2. Merge on Index.mp425.22MB
  • 6. Working with Data Part 2/3. Concatenate.mp421.14MB
  • 6. Working with Data Part 2/4. Combining DataFrames.mp419.88MB
  • 6. Working with Data Part 2/5. Reshaping.mp414.4MB
  • 6. Working with Data Part 2/6. Pivoting.mp417.98MB
  • 6. Working with Data Part 2/7. Duplicates in DataFrames.mp411.07MB
  • 6. Working with Data Part 2/8. Mapping.mp47.79MB
  • 6. Working with Data Part 2/9. Replace.mp45.15MB
  • 7. Working with Data Part 3/1. GroupBy on DataFrames.mp436.32MB
  • 7. Working with Data Part 3/2. GroupBy on Dict and Series.mp423.31MB
  • 7. Working with Data Part 3/3. Aggregation.mp443.79MB
  • 7. Working with Data Part 3/4. Splitting Applying and Combining.mp422.15MB
  • 7. Working with Data Part 3/5. Cross Tabulation.mp48.83MB
  • 8. Data Visualization/1. Installing Seaborn.mp47.26MB
  • 8. Data Visualization/2. Histograms.mp420.26MB
  • 8. Data Visualization/3. Kernel Density Estimate Plots.mp461.86MB
  • 8. Data Visualization/4. Combining Plot Styles.mp411.62MB
  • 8. Data Visualization/5. Box and Violin Plots.mp418.29MB
  • 8. Data Visualization/6. Regression Plots.mp434.85MB
  • 8. Data Visualization/7. Heatmaps and Clustered Matrices.mp439.05MB
  • 9. Example Projects/1. Data Projects Preview.mp437.11MB
  • 9. Example Projects/10. Data Project - Stock Market Analysis Part 3.mp440.01MB
  • 9. Example Projects/11. Data Project - Stock Market Analysis Part 4.mp425.88MB
  • 9. Example Projects/12. Data Project - Stock Market Analysis Part 5.mp493.98MB
  • 9. Example Projects/13. Data Project - Intro to Election Analysis.mp424.19MB
  • 9. Example Projects/14. Data Project - Election Analysis Part 1.mp444.57MB
  • 9. Example Projects/15. Data Project - Election Analysis Part 2.mp456.39MB
  • 9. Example Projects/16. Data Project - Election Analysis Part 3.mp439.06MB
  • 9. Example Projects/17. Data Project - Election Analysis Part 4.mp4158.88MB
  • 9. Example Projects/2. Intro to Data Projects.mp418.67MB
  • 9. Example Projects/3. Titanic Project - Part 1.mp443.3MB
  • 9. Example Projects/4. Titanic Project - Part 2.mp438.92MB
  • 9. Example Projects/5. Titanic Project - Part 3.mp435.08MB
  • 9. Example Projects/6. Titanic Project - Part 4.mp45.32MB
  • 9. Example Projects/7. Intro to Data Project - Stock Market Analysis.mp432.77MB
  • 9. Example Projects/8. Data Project - Stock Market Analysis Part 1.mp432.41MB
  • 9. Example Projects/9. Data Project - Stock Market Analysis Part 2.mp456.86MB