本站已收录 番号和无损神作磁力链接/BT种子 

[ CoursePig.com ] Graph-Powered Machine Learning, Video Edition

种子简介

种子名称: [ CoursePig.com ] Graph-Powered Machine Learning, Video Edition
文件类型: 视频
文件数目: 85个文件
文件大小: 4.83 GB
收录时间: 2022-5-31 23:46
已经下载: 3
资源热度: 197
最近下载: 2024-12-19 11:24

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:bc5e1e07cd0cec6734439cfd3ad082117b7d0b62&dn=[ CoursePig.com ] Graph-Powered Machine Learning, Video Edition 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[ CoursePig.com ] Graph-Powered Machine Learning, Video Edition.torrent
  • ~Get Your Files Here !/01-Part 1 Introduction.mp421.31MB
  • ~Get Your Files Here !/02-Chapter 1 Machine learning and graphs - An introduction.mp469.7MB
  • ~Get Your Files Here !/03-Chapter 1 Business understanding.mp439.1MB
  • ~Get Your Files Here !/04-Chapter 1 Machine learning challenges.mp449.84MB
  • ~Get Your Files Here !/05-Chapter 1 Performance.mp453.14MB
  • ~Get Your Files Here !/06-Chapter 1 Graphs.mp433.32MB
  • ~Get Your Files Here !/07-Chapter 1 Graphs as models of networks.mp471.29MB
  • ~Get Your Files Here !/08-Chapter 1 The role of graphs in machine learning.mp473.83MB
  • ~Get Your Files Here !/09-Chapter 2 Graph data engineering.mp482.01MB
  • ~Get Your Files Here !/10-Chapter 2 Velocity.mp450.81MB
  • ~Get Your Files Here !/11-Chapter 2 Graphs in the big data platform.mp449.38MB
  • ~Get Your Files Here !/12-Chapter 2 Graphs are valuable for big data.mp443.18MB
  • ~Get Your Files Here !/13-Chapter 2 Graphs are valuable for master data management.mp475.67MB
  • ~Get Your Files Here !/14-Chapter 2 Graph databases.mp452.12MB
  • ~Get Your Files Here !/15-Chapter 2 Sharding.mp470.52MB
  • ~Get Your Files Here !/16-Chapter 2 Native vs. non-native graph databases.mp479.92MB
  • ~Get Your Files Here !/17-Chapter 2 Label property graphs.mp437.69MB
  • ~Get Your Files Here !/18-Chapter 3 Graphs in machine learning applications.mp465.87MB
  • ~Get Your Files Here !/19-Chapter 3 Managing data sources.mp477.36MB
  • ~Get Your Files Here !/20-Chapter 3 Detect a fraud.mp452.33MB
  • ~Get Your Files Here !/21-Chapter 3 Recommend items.mp463.56MB
  • ~Get Your Files Here !/22-Chapter 3 Algorithms.mp448.19MB
  • ~Get Your Files Here !/23-Chapter 3 Find keywords in a document.mp453.6MB
  • ~Get Your Files Here !/24-Chapter 3 Storing and accessing machine learning models.mp431.38MB
  • ~Get Your Files Here !/25-Chapter 3 Monitoring a subject.mp455.54MB
  • ~Get Your Files Here !/26-Chapter 3 Visualization.mp437.9MB
  • ~Get Your Files Here !/27-Chapter 3 Leftover - Deep learning and graph neural networks.mp452.78MB
  • ~Get Your Files Here !/28-Part 2 Recommendations.mp4148.91MB
  • ~Get Your Files Here !/29-Chapter 4 Content-based recommendations.mp467.48MB
  • ~Get Your Files Here !/30-Chapter 4 Representing item features.mp463.39MB
  • ~Get Your Files Here !/31-Chapter 4 Representing item features.mp460.23MB
  • ~Get Your Files Here !/32-Chapter 4 User modeling.mp433.57MB
  • ~Get Your Files Here !/33-Chapter 4 Providing recommendations.mp456.79MB
  • ~Get Your Files Here !/34-Chapter 4 Providing recommendations.mp466.34MB
  • ~Get Your Files Here !/35-Chapter 4 Providing recommendations.mp472.6MB
  • ~Get Your Files Here !/36-Chapter 5 Collaborative filtering.mp498.97MB
  • ~Get Your Files Here !/37-Chapter 5 Collaborative filtering recommendations.mp492.75MB
  • ~Get Your Files Here !/38-Chapter 5 Computing the nearest neighbor network.mp469.04MB
  • ~Get Your Files Here !/39-Chapter 5 Computing the nearest neighbor network.mp447.87MB
  • ~Get Your Files Here !/40-Chapter 5 Providing recommendations.mp453.76MB
  • ~Get Your Files Here !/41-Chapter 5 Dealing with the cold-start problem.mp440.18MB
  • ~Get Your Files Here !/42-Chapter 6 Session-based recommendations.mp461.79MB
  • ~Get Your Files Here !/43-Chapter 6 The events chain and the session graph.mp468.35MB
  • ~Get Your Files Here !/44-Chapter 6 Providing recommendations.mp481.3MB
  • ~Get Your Files Here !/45-Chapter 6 Session-based k-NN.mp463.6MB
  • ~Get Your Files Here !/46-Chapter 7 Context-aware and hybrid recommendations.mp467.6MB
  • ~Get Your Files Here !/47-Chapter 7 Representing contextual information.mp442.88MB
  • ~Get Your Files Here !/48-Chapter 7 Providing recommendations.mp485.94MB
  • ~Get Your Files Here !/49-Chapter 7 Providing recommendations.mp485.12MB
  • ~Get Your Files Here !/50-Chapter 7 Advantages of the graph approach.mp451.81MB
  • ~Get Your Files Here !/51-Chapter 7 Providing recommendations.mp438.56MB
  • ~Get Your Files Here !/52-Part 3 Fighting fraud.mp434.38MB
  • ~Get Your Files Here !/53-Chapter 8 Basic approaches to graph-powered fraud detection.mp448.49MB
  • ~Get Your Files Here !/54-Chapter 8 Fraud prevention and detection.mp445.24MB
  • ~Get Your Files Here !/55-Chapter 8 The role of graphs in fighting fraud.mp447.11MB
  • ~Get Your Files Here !/56-Chapter 8 Warm-up - Basic approaches.mp455.49MB
  • ~Get Your Files Here !/57-Chapter 8 Identifying a fraud ring.mp446.91MB
  • ~Get Your Files Here !/58-Chapter 9 Proximity-based algorithms.mp468.99MB
  • ~Get Your Files Here !/59-Chapter 9 Distance-based approach.mp449.88MB
  • ~Get Your Files Here !/60-Chapter 9 Creating the k-nearest neighbors graph.mp452.11MB
  • ~Get Your Files Here !/61-Chapter 9 Identifying fraudulent transactions.mp482.58MB
  • ~Get Your Files Here !/62-Chapter 9 Identifying fraudulent transactions.mp432.51MB
  • ~Get Your Files Here !/63-Chapter 10 Social network analysis against fraud.mp479.64MB
  • ~Get Your Files Here !/64-Chapter 10 Social network analysis concepts.mp446.44MB
  • ~Get Your Files Here !/65-Chapter 10 Score-based methods.mp432.24MB
  • ~Get Your Files Here !/66-Chapter 10 Neighborhood metrics.mp445.87MB
  • ~Get Your Files Here !/67-Chapter 10 Centrality metrics.mp461.27MB
  • ~Get Your Files Here !/68-Chapter 10 Collective inference algorithms.mp450.6MB
  • ~Get Your Files Here !/69-Chapter 10 Cluster-based methods.mp465.65MB
  • ~Get Your Files Here !/70-Part 4 Taming text with graphs.mp424.45MB
  • ~Get Your Files Here !/71-Chapter 11 Graph-based natural language processing.mp457.65MB
  • ~Get Your Files Here !/72-Chapter 11 A basic approach - Store and access sequence of words.mp453.54MB
  • ~Get Your Files Here !/73-Chapter 11 NLP and graphs.mp480.48MB
  • ~Get Your Files Here !/74-Chapter 11 NLP and graphs.mp470.02MB
  • ~Get Your Files Here !/75-Chapter 12 Knowledge graphs.mp460.09MB
  • ~Get Your Files Here !/76-Chapter 12 Knowledge graph building - Entities.mp494.08MB
  • ~Get Your Files Here !/77-Chapter 12 Knowledge graph building - Relationships.mp468.65MB
  • ~Get Your Files Here !/78-Chapter 12 Semantic networks.mp438.36MB
  • ~Get Your Files Here !/79-Chapter 12 Unsupervised keyword extraction.mp452.87MB
  • ~Get Your Files Here !/80-Chapter 12 Unsupervised keyword extraction.mp435.89MB
  • ~Get Your Files Here !/81-Chapter 12 Keyword co-occurrence graph.mp450.57MB
  • ~Get Your Files Here !/82-Appendix A. Machine learning algorithms taxonomy.mp465.16MB
  • ~Get Your Files Here !/83-Appendix C Graphs for processing patterns and workflows.mp443.83MB
  • ~Get Your Files Here !/84-Appendix C Graphs for defining complex processing workflows.mp450.43MB
  • ~Get Your Files Here !/85-Appendix D. Representing graphs.mp440.52MB