本站已收录 番号和无损神作磁力链接/BT种子 

Machine Learning A-Z - Hands On Python and R In Data Science

种子简介

种子名称: Machine Learning A-Z - Hands On Python and R In Data Science
文件类型: 视频
文件数目: 198个文件
文件大小: 5.55 GB
收录时间: 2017-12-15 16:12
已经下载: 3
资源热度: 444
最近下载: 2025-1-3 11:39

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:bf9ae544498f69e39584e69082ae6f64f102c4a4&dn=Machine Learning A-Z - Hands On Python and R In Data Science 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

Machine Learning A-Z - Hands On Python and R In Data Science.torrent
  • 01 Welcome to the course/004 Installing Python and Anaconda MAC Windows.mp423.96MB
  • 01 Welcome to the course/003 Installing R and R Studio MAC Windows.mp423.21MB
  • 01 Welcome to the course/002 Why Machine Learning is the Future.mp414.48MB
  • 01 Welcome to the course/001 Applications of Machine Learning.mp49.81MB
  • 02 -------------------------- Part 1 Data Preprocessing --------------------------/012 Categorical Data.mp452.88MB
  • 02 -------------------------- Part 1 Data Preprocessing --------------------------/013 Splitting the Dataset into the Training set and Test set.mp450.91MB
  • 02 -------------------------- Part 1 Data Preprocessing --------------------------/014 Feature Scaling.mp444.59MB
  • 02 -------------------------- Part 1 Data Preprocessing --------------------------/011 Missing Data.mp439.32MB
  • 02 -------------------------- Part 1 Data Preprocessing --------------------------/009 Importing the Dataset.mp428.64MB
  • 02 -------------------------- Part 1 Data Preprocessing --------------------------/015 And here is our Data Preprocessing Template.mp425.86MB
  • 02 -------------------------- Part 1 Data Preprocessing --------------------------/008 Importing the Libraries.mp413.56MB
  • 02 -------------------------- Part 1 Data Preprocessing --------------------------/007 Get the dataset.mp47.24MB
  • 02 -------------------------- Part 1 Data Preprocessing --------------------------/006 Welcome to Part 1 - Data Preprocessing.mp43.52MB
  • 04 Simple Linear Regression/027 Simple Linear Regression in R - Step 4.mp449.16MB
  • 04 Simple Linear Regression/023 Simple Linear Regression in Python - Step 4.mp439.37MB
  • 04 Simple Linear Regression/020 Simple Linear Regression in Python - Step 1.mp427.92MB
  • 04 Simple Linear Regression/025 Simple Linear Regression in R - Step 2.mp424.87MB
  • 04 Simple Linear Regression/021 Simple Linear Regression in Python - Step 2.mp424.62MB
  • 04 Simple Linear Regression/022 Simple Linear Regression in Python - Step 3.mp420.55MB
  • 04 Simple Linear Regression/024 Simple Linear Regression in R - Step 1.mp411.52MB
  • 04 Simple Linear Regression/026 Simple Linear Regression in R - Step 3.mp411.42MB
  • 04 Simple Linear Regression/018 Simple Linear Regression Intuition - Step 1.mp410.52MB
  • 04 Simple Linear Regression/017 Dataset Business Problem Description.mp47.77MB
  • 04 Simple Linear Regression/019 Simple Linear Regression Intuition - Step 2.mp45.99MB
  • 05 Multiple Linear Regression/038 Multiple Linear Regression in Python - Backward Elimination - HOMEWORK.mp459.14MB
  • 05 Multiple Linear Regression/037 Multiple Linear Regression in Python - Backward Elimination - Preparation.mp454.54MB
  • 05 Multiple Linear Regression/039 Multiple Linear Regression in Python - Backward Elimination - Homework Solution.mp454.26MB
  • 05 Multiple Linear Regression/034 Multiple Linear Regression in Python - Step 1.mp452.18MB
  • 05 Multiple Linear Regression/043 Multiple Linear Regression in R - Backward Elimination - HOMEWORK.mp450.78MB
  • 05 Multiple Linear Regression/041 Multiple Linear Regression in R - Step 2.mp445.22MB
  • 05 Multiple Linear Regression/033 Multiple Linear Regression Intuition - Step 5.mp432.8MB
  • 05 Multiple Linear Regression/036 Multiple Linear Regression in Python - Step 3.mp425.48MB
  • 05 Multiple Linear Regression/040 Multiple Linear Regression in R - Step 1.mp423.44MB
  • 05 Multiple Linear Regression/044 Multiple Linear Regression in R - Backward Elimination - Homework Solution.mp421.95MB
  • 05 Multiple Linear Regression/031 Multiple Linear Regression Intuition - Step 3.mp416.59MB
  • 05 Multiple Linear Regression/042 Multiple Linear Regression in R - Step 3.mp413.85MB
  • 05 Multiple Linear Regression/028 Dataset Business Problem Description.mp412.56MB
  • 05 Multiple Linear Regression/035 Multiple Linear Regression in Python - Step 2.mp49.84MB
  • 05 Multiple Linear Regression/032 Multiple Linear Regression Intuition - Step 4.mp45.34MB
  • 05 Multiple Linear Regression/030 Multiple Linear Regression Intuition - Step 2.mp42.03MB
  • 05 Multiple Linear Regression/029 Multiple Linear Regression Intuition - Step 1.mp42MB
  • 06 Polynomial Regression/053 Polynomial Regression in R - Step 3.mp454.8MB
  • 06 Polynomial Regression/048 Polynomial Regression in Python - Step 3.mp454.5MB
  • 06 Polynomial Regression/050 Python Regression Template.mp436.78MB
  • 06 Polynomial Regression/047 Polynomial Regression in Python - Step 2.mp435.11MB
  • 06 Polynomial Regression/052 Polynomial Regression in R - Step 2.mp432.28MB
  • 06 Polynomial Regression/046 Polynomial Regression in Python - Step 1.mp431.64MB
  • 06 Polynomial Regression/055 R Regression Template.mp431.33MB
  • 06 Polynomial Regression/054 Polynomial Regression in R - Step 4.mp428.52MB
  • 06 Polynomial Regression/051 Polynomial Regression in R - Step 1.mp421.21MB
  • 06 Polynomial Regression/049 Polynomial Regression in Python - Step 4.mp417.65MB
  • 06 Polynomial Regression/045 Polynomial Regression Intuition.mp49.44MB
  • 07 Support Vector Regression SVR/056 SVR in Python.mp460.22MB
  • 07 Support Vector Regression SVR/057 SVR in R.mp433.73MB
  • 08 Decision Tree Regression/060 Decision Tree Regression in R.mp456.23MB
  • 08 Decision Tree Regression/059 Decision Tree Regression in Python.mp443.44MB
  • 08 Decision Tree Regression/058 Decision Tree Regression Intuition.mp425.33MB
  • 09 Random Forest Regression/062 Random Forest Regression in Python.mp452.69MB
  • 09 Random Forest Regression/063 Random Forest Regression in R.mp451.86MB
  • 09 Random Forest Regression/061 Random Forest Regression Intuition.mp415.65MB
  • 10 Evaluating Regression Models Performance/066 Evaluating Regression Models Performance - Homeworks Final Part.mp428.35MB
  • 10 Evaluating Regression Models Performance/067 Interpreting Linear Regression Coefficients.mp427.38MB
  • 10 Evaluating Regression Models Performance/065 Adjusted R-Squared Intuition.mp421.41MB
  • 10 Evaluating Regression Models Performance/064 R-Squared Intuition.mp49.8MB
  • 12 Logistic Regression/080 Logistic Regression in R - Step 5.mp493.76MB
  • 12 Logistic Regression/074 Logistic Regression in Python - Step 5.mp453.15MB
  • 12 Logistic Regression/069 Logistic Regression Intuition.mp429.17MB
  • 12 Logistic Regression/078 Logistic Regression in R - Step 3.mp427.44MB
  • 12 Logistic Regression/075 Python Classification Template.mp417.58MB
  • 12 Logistic Regression/081 R Classification Template.mp417.5MB
  • 12 Logistic Regression/070 Logistic Regression in Python - Step 1.mp416.84MB
  • 12 Logistic Regression/076 Logistic Regression in R - Step 1.mp415.72MB
  • 12 Logistic Regression/077 Logistic Regression in R - Step 2.mp414.85MB
  • 12 Logistic Regression/073 Logistic Regression in Python - Step 4.mp413.87MB
  • 12 Logistic Regression/079 Logistic Regression in R - Step 4.mp411.73MB
  • 12 Logistic Regression/071 Logistic Regression in Python - Step 2.mp411.1MB
  • 12 Logistic Regression/072 Logistic Regression in Python - Step 3.mp47.98MB
  • 13 K-Nearest Neighbors K-NN/084 K-NN in R.mp455.77MB
  • 13 K-Nearest Neighbors K-NN/083 K-NN in Python.mp446.98MB
  • 13 K-Nearest Neighbors K-NN/082 K-Nearest Neighbor Intuition.mp410.48MB
  • 14 Support Vector Machine SVM/087 SVM in R.mp465.31MB
  • 14 Support Vector Machine SVM/086 SVM in Python.mp441.71MB
  • 14 Support Vector Machine SVM/085 SVM Intuition.mp419.92MB
  • 15 Kernel SVM/092 Kernel SVM in Python.mp454.86MB
  • 15 Kernel SVM/093 Kernel SVM in R.mp452.82MB
  • 15 Kernel SVM/090 The Kernel Trick.mp434.72MB
  • 15 Kernel SVM/091 Types of Kernel Functions.mp415.71MB
  • 15 Kernel SVM/089 Mapping to a higher dimension.mp415.39MB
  • 15 Kernel SVM/088 Kernel SVM Intuition.mp46.42MB
  • 16 Naive Bayes/094 Bayes Theorem.mp450.43MB
  • 16 Naive Bayes/099 Naive Bayes in R.mp449.79MB
  • 16 Naive Bayes/098 Naive Bayes in Python.mp431.14MB
  • 16 Naive Bayes/095 Naive Bayes Intuition.mp431.1MB
  • 16 Naive Bayes/097 Naive Bayes Intuition Extras.mp418.94MB
  • 16 Naive Bayes/096 Naive Bayes Intuition Challenge Reveal.mp413.27MB
  • 17 Decision Tree Classification/102 Decision Tree Classification in R.mp468.18MB
  • 17 Decision Tree Classification/101 Decision Tree Classification in Python.mp438.85MB
  • 17 Decision Tree Classification/100 Decision Tree Classification Intuition.mp421.63MB
  • 18 Random Forest Classification/105 Random Forest Classification in R.mp464.11MB
  • 18 Random Forest Classification/104 Random Forest Classification in Python.mp462.04MB
  • 18 Random Forest Classification/103 Random Forest Classification Intuition.mp425.66MB
  • 19 Evaluating Classification Models Performance/109 CAP Curve.mp420.31MB
  • 19 Evaluating Classification Models Performance/106 False Positives False Negatives.mp415.12MB
  • 19 Evaluating Classification Models Performance/110 CAP Curve Analysis.mp412.94MB
  • 19 Evaluating Classification Models Performance/107 Confusion Matrix.mp48.91MB
  • 19 Evaluating Classification Models Performance/108 Accuracy Paradox.mp44.21MB
  • 21 K-Means Clustering/115 K-Means Clustering in Python.mp449.81MB
  • 21 K-Means Clustering/116 K-Means Clustering in R.mp436.91MB
  • 21 K-Means Clustering/112 K-Means Clustering Intuition.mp429.97MB
  • 21 K-Means Clustering/114 K-Means Selecting The Number Of Clusters.mp425.68MB
  • 21 K-Means Clustering/113 K-Means Random Initialization Trap.mp415.36MB
  • 22 Hierarchical Clustering/119 Hierarchical Clustering Using Dendrograms.mp422.81MB
  • 22 Hierarchical Clustering/123 HC in Python - Step 4.mp421.32MB
  • 22 Hierarchical Clustering/118 Hierarchical Clustering How Dendrograms Work.mp417.46MB
  • 22 Hierarchical Clustering/117 Hierarchical Clustering Intuition.mp416.52MB
  • 22 Hierarchical Clustering/122 HC in Python - Step 3.mp416.17MB
  • 22 Hierarchical Clustering/121 HC in Python - Step 2.mp415.51MB
  • 22 Hierarchical Clustering/126 HC in R - Step 2.mp413.87MB
  • 22 Hierarchical Clustering/120 HC in Python - Step 1.mp413.77MB
  • 22 Hierarchical Clustering/129 HC in R - Step 5.mp413.68MB
  • 22 Hierarchical Clustering/128 HC in R - Step 4.mp410.17MB
  • 22 Hierarchical Clustering/127 HC in R - Step 3.mp49.95MB
  • 22 Hierarchical Clustering/124 HC in Python - Step 5.mp49.92MB
  • 22 Hierarchical Clustering/125 HC in R - Step 1.mp48.59MB
  • 24 Apriori/133 Apriori in R - Step 3.mp456.51MB
  • 24 Apriori/131 Apriori in R - Step 1.mp452.83MB
  • 24 Apriori/134 Apriori in Python - Step 1.mp447.41MB
  • 24 Apriori/132 Apriori in R - Step 2.mp438.81MB
  • 24 Apriori/135 Apriori in Python - Step 2.mp437.32MB
  • 24 Apriori/136 Apriori in Python - Step 3.mp435.3MB
  • 25 Eclat/137 Eclat in R.mp425.26MB
  • 27 Upper Confidence Bound UCB/145 Upper Confidence Bound in R - Step 3.mp457.84MB
  • 27 Upper Confidence Bound UCB/141 Upper Confidence Bound in Python - Step 3.mp453.71MB
  • 27 Upper Confidence Bound UCB/140 Upper Confidence Bound in Python - Step 2.mp444.49MB
  • 27 Upper Confidence Bound UCB/139 Upper Confidence Bound in Python - Step 1.mp439.01MB
  • 27 Upper Confidence Bound UCB/144 Upper Confidence Bound in R - Step 2.mp434.1MB
  • 27 Upper Confidence Bound UCB/143 Upper Confidence Bound in R - Step 1.mp434.01MB
  • 27 Upper Confidence Bound UCB/142 Upper Confidence Bound in Python - Step 4.mp412.44MB
  • 27 Upper Confidence Bound UCB/146 Upper Confidence Bound in R - Step 4.mp49.55MB
  • 28 Thompson Sampling/147 Thompson Sampling in Python - Step 1.mp455.52MB
  • 28 Thompson Sampling/149 Thompson Sampling in R - Step 1.mp451.04MB
  • 28 Thompson Sampling/148 Thompson Sampling in Python - Step 2.mp411.22MB
  • 28 Thompson Sampling/150 Thompson Sampling in R - Step 2.mp49.56MB
  • 29 --------------------- Part 7 Natural Language Processing ---------------------/172 Natural Language Processing in R - Step 10.mp454.14MB
  • 29 --------------------- Part 7 Natural Language Processing ---------------------/159 Natural Language Processing in Python - Step 8.mp452.02MB
  • 29 --------------------- Part 7 Natural Language Processing ---------------------/163 Natural Language Processing in R - Step 1.mp451.2MB
  • 29 --------------------- Part 7 Natural Language Processing ---------------------/152 Natural Language Processing in Python - Step 1.mp446.06MB
  • 29 --------------------- Part 7 Natural Language Processing ---------------------/171 Natural Language Processing in R - Step 9.mp437.69MB
  • 29 --------------------- Part 7 Natural Language Processing ---------------------/161 Natural Language Processing in Python - Step 10.mp432.91MB
  • 29 --------------------- Part 7 Natural Language Processing ---------------------/155 Natural Language Processing in Python - Step 4.mp429.75MB
  • 29 --------------------- Part 7 Natural Language Processing ---------------------/153 Natural Language Processing in Python - Step 2.mp427.44MB
  • 29 --------------------- Part 7 Natural Language Processing ---------------------/158 Natural Language Processing in Python - Step 7.mp422.13MB
  • 29 --------------------- Part 7 Natural Language Processing ---------------------/164 Natural Language Processing in R - Step 2.mp421.66MB
  • 29 --------------------- Part 7 Natural Language Processing ---------------------/160 Natural Language Processing in Python - Step 9.mp418.9MB
  • 29 --------------------- Part 7 Natural Language Processing ---------------------/156 Natural Language Processing in Python - Step 5.mp418.8MB
  • 29 --------------------- Part 7 Natural Language Processing ---------------------/170 Natural Language Processing in R - Step 8.mp417.23MB
  • 29 --------------------- Part 7 Natural Language Processing ---------------------/165 Natural Language Processing in R - Step 3.mp416.89MB
  • 29 --------------------- Part 7 Natural Language Processing ---------------------/168 Natural Language Processing in R - Step 6.mp416.09MB
  • 29 --------------------- Part 7 Natural Language Processing ---------------------/169 Natural Language Processing in R - Step 7.mp49.59MB
  • 29 --------------------- Part 7 Natural Language Processing ---------------------/157 Natural Language Processing in Python - Step 6.mp48.32MB
  • 29 --------------------- Part 7 Natural Language Processing ---------------------/166 Natural Language Processing in R - Step 4.mp48.24MB
  • 29 --------------------- Part 7 Natural Language Processing ---------------------/167 Natural Language Processing in R - Step 5.mp45.78MB
  • 29 --------------------- Part 7 Natural Language Processing ---------------------/154 Natural Language Processing in Python - Step 3.mp44.16MB
  • 31 Artificial Neural Networks/177 ANN in Python - Step 2.mp484.87MB
  • 31 Artificial Neural Networks/186 ANN in R - Step 1.mp449.89MB
  • 31 Artificial Neural Networks/189 ANN in R - Step 4 Last step.mp443.75MB
  • 31 Artificial Neural Networks/180 ANN in Python - Step 5.mp439.36MB
  • 31 Artificial Neural Networks/188 ANN in R - Step 3.mp437.85MB
  • 31 Artificial Neural Networks/176 ANN in Python - Step 1 - Installing Theano Tensorflow and Keras.mp437.45MB
  • 31 Artificial Neural Networks/183 ANN in Python - Step 8.mp434.03MB
  • 31 Artificial Neural Networks/175 Business Problem Description.mp429.23MB
  • 31 Artificial Neural Networks/184 ANN in Python - Step 9.mp428.47MB
  • 31 Artificial Neural Networks/185 ANN in Python - Step 10.mp428.42MB
  • 31 Artificial Neural Networks/187 ANN in R - Step 2.mp418.24MB
  • 31 Artificial Neural Networks/182 ANN in Python - Step 7.mp414.92MB
  • 31 Artificial Neural Networks/178 ANN in Python - Step 3.mp414.62MB
  • 31 Artificial Neural Networks/181 ANN in Python - Step 6.mp411.93MB
  • 31 Artificial Neural Networks/179 ANN in Python - Step 4.mp49.69MB
  • 32 Convolutional Neural Networks/198 CNN in Python - Step 9.mp462.41MB
  • 32 Convolutional Neural Networks/193 CNN in Python - Step 4.mp434.62MB
  • 32 Convolutional Neural Networks/190 CNN in Python - Step 1.mp430.6MB
  • 32 Convolutional Neural Networks/199 CNN in Python - Step 10.mp427.74MB
  • 32 Convolutional Neural Networks/196 CNN in Python - Step 7.mp416.65MB
  • 32 Convolutional Neural Networks/194 CNN in Python - Step 5.mp412.38MB
  • 32 Convolutional Neural Networks/195 CNN in Python - Step 6.mp411.94MB
  • 32 Convolutional Neural Networks/197 CNN in Python - Step 8.mp48.95MB
  • 32 Convolutional Neural Networks/191 CNN in Python - Step 2.mp47.2MB
  • 32 Convolutional Neural Networks/192 CNN in Python - Step 3.mp42.8MB
  • 34 Principal Component Analysis PCA/202 PCA in Python - Step 1.mp431.95MB
  • 34 Principal Component Analysis PCA/204 PCA in Python - Step 3.mp425.51MB
  • 34 Principal Component Analysis PCA/203 PCA in Python - Step 2.mp422.07MB
  • 35 Linear Discriminant Analysis LDA/205 LDA in Python.mp445.42MB
  • 36 Kernel PCA/206 Kernel PCA in Python.mp433.38MB
  • 38 Model Selection/209 Grid Search in Python - Step 1.mp438.21MB
  • 38 Model Selection/208 k-Fold Cross Validation in Python.mp432.83MB
  • 38 Model Selection/210 Grid Search in Python - Step 2.mp429.51MB
  • 39 XGBoost/212 XGBoost in Python - Step 2.mp431.97MB
  • 39 XGBoost/211 XGBoost in Python - Step 1.mp421.39MB