本站已收录 番号和无损神作磁力链接/BT种子 

[FreeCourseSite.com] Udemy - Modern Deep Learning in Python

种子简介

种子名称: [FreeCourseSite.com] Udemy - Modern Deep Learning in Python
文件类型: 视频
文件数目: 33个文件
文件大小: 490.85 MB
收录时间: 2019-6-17 21:11
已经下载: 3
资源热度: 61
最近下载: 2024-11-9 06:28

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:c317a7c02cce491dc0cd33731a421b1c6acd060c&dn=[FreeCourseSite.com] Udemy - Modern Deep Learning in Python 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[FreeCourseSite.com] Udemy - Modern Deep Learning in Python.torrent
  • 01 Outline the MNIST dataset and Linear Logistic Regression Benchmark/001 Outline - what did you learn previously and what will you learn in this course.mp44.64MB
  • 01 Outline the MNIST dataset and Linear Logistic Regression Benchmark/002 Where does this course fit into your deep learning studies.mp45.99MB
  • 01 Outline the MNIST dataset and Linear Logistic Regression Benchmark/003 How to Succeed in this Course.mp48.78MB
  • 01 Outline the MNIST dataset and Linear Logistic Regression Benchmark/004 Where to get the MNIST dataset and Establishing a Linear Benchmark.mp411.11MB
  • 02 Gradient Descent Full vs Batch vs Stochastic/005 What are full batch and stochastic gradient descent.mp45.83MB
  • 02 Gradient Descent Full vs Batch vs Stochastic/006 Full vs Batch vs Stochastic Gradient Descent in code.mp413.98MB
  • 03 Momentum and adaptive learning rates/007 Momentum.mp43.18MB
  • 03 Momentum and adaptive learning rates/008 Code for training a neural network using momentum.mp414.6MB
  • 03 Momentum and adaptive learning rates/009 Variable and adaptive learning rates.mp45.09MB
  • 03 Momentum and adaptive learning rates/010 Constant learning rate vs. RMSProp in Code.mp410.98MB
  • 04 Choosing Hyperparameters/011 Hyperparameter Optimization Cross-validation Grid Search and Random Search.mp45.51MB
  • 04 Choosing Hyperparameters/012 Grid Search in Code.mp413.76MB
  • 04 Choosing Hyperparameters/013 Random Search in Code.mp47.93MB
  • 05 Theano/014 Theano Basics Variables Functions Expressions Optimization.mp419.35MB
  • 05 Theano/015 Building a neural network in Theano.mp421.79MB
  • 06 TensorFlow/016 TensorFlow Basics Variables Functions Expressions Optimization.mp417.11MB
  • 06 TensorFlow/017 Building a neural network in TensorFlow.mp423.84MB
  • 07 GPU Speedup Homework and Other Misc Topics/018 Setting up a GPU Instance on Amazon Web Services.mp425.68MB
  • 07 GPU Speedup Homework and Other Misc Topics/019 Can Big Data be used to Speed Up Backpropagation.mp45.22MB
  • 07 GPU Speedup Homework and Other Misc Topics/020 Exercises and Concepts Still to be Covered.mp44.46MB
  • 07 GPU Speedup Homework and Other Misc Topics/021 How to Improve your Theano and Tensorflow Skills.mp47.33MB
  • 07 GPU Speedup Homework and Other Misc Topics/022 Theano vs. TensorFlow.mp49.13MB
  • 08 Modern Regularization Techniques/023 Dropout Regularization.mp422.7MB
  • 08 Modern Regularization Techniques/024 Dropout Intuition.mp46.14MB
  • 09 Project Facial Expression Recognition/025 Facial Expression Recognition Problem Description.mp421.43MB
  • 09 Project Facial Expression Recognition/026 The class imbalance problem.mp410.11MB
  • 09 Project Facial Expression Recognition/027 Utilities walkthrough.mp413.48MB
  • 09 Project Facial Expression Recognition/028 Class-Based ANN in Theano.mp443.98MB
  • 09 Project Facial Expression Recognition/029 Class-Based ANN in TensorFlow.mp437.39MB
  • 10 Appendix/030 Manually Choosing Learning Rate and Regularization Penalty.mp47.06MB
  • 10 Appendix/031 How to install Numpy Scipy Matplotlib Pandas IPython Theano and TensorFlow.mp443.92MB
  • 10 Appendix/032 How to Code by Yourself part 1.mp424.53MB
  • 10 Appendix/033 How to Code by Yourself part 2.mp414.8MB