本站已收录 番号和无损神作磁力链接/BT种子 

[CourseClub.NET] Coursera - How to Win a Data Science Competition Learn from Top Kagglers

种子简介

种子名称: [CourseClub.NET] Coursera - How to Win a Data Science Competition Learn from Top Kagglers
文件类型: 视频
文件数目: 64个文件
文件大小: 2.03 GB
收录时间: 2019-7-23 01:57
已经下载: 3
资源热度: 205
最近下载: 2024-11-30 13:05

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:c34a26f7a024c4767216af3e9c47f26540d7d1d0&dn=[CourseClub.NET] Coursera - How to Win a Data Science Competition Learn from Top Kagglers 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[CourseClub.NET] Coursera - How to Win a Data Science Competition Learn from Top Kagglers.torrent
  • 001.Welcome to How to win a data science competition/001. Introduction.mp49.72MB
  • 001.Welcome to How to win a data science competition/002. Meet your lecturers.mp413.85MB
  • 001.Welcome to How to win a data science competition/003. Course overview.mp434.63MB
  • 002.Competition mechanics/004. Competition Mechanics.mp424.94MB
  • 002.Competition mechanics/005. Kaggle Overview [screencast].mp432.38MB
  • 002.Competition mechanics/006. Real World Application vs Competitions.mp420MB
  • 003.Recap of main ML algorithms/007. Recap of main ML algorithms.mp433.45MB
  • 004.Software Hardware requirements/008. Software Hardware Requirements.mp421.53MB
  • 005.Feature preprocessing and generation with respect to models/009. Overview.mp425.67MB
  • 005.Feature preprocessing and generation with respect to models/010. Numeric features.mp448.31MB
  • 005.Feature preprocessing and generation with respect to models/011. Categorical and ordinal features.mp440.55MB
  • 005.Feature preprocessing and generation with respect to models/012. Datetime and coordinates.mp432.41MB
  • 005.Feature preprocessing and generation with respect to models/013. Handling missing values.mp437.85MB
  • 006.Feature extraction from text and images/014. Bag of words.mp438.04MB
  • 006.Feature extraction from text and images/015. Word2vec, CNN.mp445.96MB
  • 007.Final project/016. Final project overview.mp417.81MB
  • 008.Exploratory data analysis/017. Exploratory data analysis.mp423.95MB
  • 008.Exploratory data analysis/018. Building intuition about the data.mp422.29MB
  • 008.Exploratory data analysis/019. Exploring anonymized data.mp443.05MB
  • 008.Exploratory data analysis/020. Visualizations.mp442.59MB
  • 008.Exploratory data analysis/021. Dataset cleaning and other things to check.mp425.83MB
  • 009.EDA examples/022. Springleaf competition EDA I.mp420.11MB
  • 009.EDA examples/023. Springleaf competition EDA II.mp444.36MB
  • 009.EDA examples/024. Numerai competition EDA.mp421.95MB
  • 010.Validation/025. Validation and overfitting.mp434.09MB
  • 010.Validation/026. Validation strategies.mp426.15MB
  • 010.Validation/027. Data splitting strategies.mp456.16MB
  • 010.Validation/028. Problems occurring during validation.mp471.05MB
  • 011.Data leakages/029. Basic data leaks.mp422.14MB
  • 011.Data leakages/030. Leaderboard probing and examples of rare data leaks.mp434.07MB
  • 011.Data leakages/031. Expedia challenge.mp435.65MB
  • 012.Metrics optimization/032. Motivation.mp427.49MB
  • 012.Metrics optimization/033. Regression metrics review I.mp446.38MB
  • 012.Metrics optimization/034. Regression metrics review II.mp429.2MB
  • 012.Metrics optimization/035. Classification metrics review.mp470.29MB
  • 012.Metrics optimization/036. General approaches for metrics optimization.mp423.71MB
  • 012.Metrics optimization/037. Regression metrics optimization.mp435.84MB
  • 012.Metrics optimization/038. Classification metrics optimization I.mp426.25MB
  • 012.Metrics optimization/039. Classification metrics optimization II.mp425.24MB
  • 013.Mean encodings/040. Concept of mean encoding.mp430.55MB
  • 013.Mean encodings/041. Regularization.mp428.37MB
  • 013.Mean encodings/042. Extensions and generalizations.mp439.24MB
  • 014.Hyperparameter tuning/043. Hyperparameter tuning I.mp424.96MB
  • 014.Hyperparameter tuning/044. Hyperparameter tuning II.mp443.3MB
  • 014.Hyperparameter tuning/045. Hyperparameter tuning III.mp447.18MB
  • 015.Tips and tricks/046. Practical guide.mp459.12MB
  • 015.Tips and tricks/047. KazAnova's competition pipeline, part 1.mp433.81MB
  • 015.Tips and tricks/048. KazAnova's competition pipeline, part 2.mp432MB
  • 016.Advanced features II/049. Statistics and distance based features.mp420.96MB
  • 016.Advanced features II/050. Matrix factorizations.mp424.14MB
  • 016.Advanced features II/051. Feature Interactions.mp420.41MB
  • 016.Advanced features II/052. t-SNE.mp421.56MB
  • 017.Ensembling/053. Introduction into ensemble methods.mp410.68MB
  • 017.Ensembling/054. Bagging.mp415.93MB
  • 017.Ensembling/055. Boosting.mp427.94MB
  • 017.Ensembling/056. Stacking.mp430.78MB
  • 017.Ensembling/057. StackNet.mp429.25MB
  • 017.Ensembling/058. Ensembling Tips and Tricks.mp425.59MB
  • 018.Competitions go through/059. Crowdflower Competition.mp436.12MB
  • 018.Competitions go through/060. Springleaf Marketing Response.mp424.24MB
  • 018.Competitions go through/061. Microsoft Malware Classification Challenge.mp468.35MB
  • 018.Competitions go through/062. Walmart Trip Type Classification.mp429.55MB
  • 018.Competitions go through/063. Acquire Valued Shoppers Challenge, part 1.mp434.77MB
  • 018.Competitions go through/064. Acquire Valued Shoppers Challenge, part 2.mp430.87MB