种子简介
种子名称:
[DesireCourse.Net] Udemy - Beginning with Machine Learning & Data Science in Python
文件类型:
视频
文件数目:
50个文件
文件大小:
531.1 MB
收录时间:
2021-3-25 12:31
已经下载:
3次
资源热度:
152
最近下载:
2024-12-26 04:59
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:c4db89131dae7b02aeff820353dd60dd92cade21&dn=[DesireCourse.Net] Udemy - Beginning with Machine Learning & Data Science in Python
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
[DesireCourse.Net] Udemy - Beginning with Machine Learning & Data Science in Python.torrent
1. Working with Machine Learning/1. Exploring Machine Learning and its Types.mp47.32MB
1. Working with Machine Learning/3. Install Anaconda.mp48.78MB
1. Working with Machine Learning/5. Python and Jupyter Demo.mp417.69MB
2. Understanding Data Wrangling/1. Introduction.mp4498.56KB
2. Understanding Data Wrangling/10. Summary.mp4539.41KB
2. Understanding Data Wrangling/2. Reading from a CSV.mp416.06MB
2. Understanding Data Wrangling/3. Selecting data and finding the most common complaint type.mp425.11MB
2. Understanding Data Wrangling/4. Which borough has the most noise complaints.mp419.48MB
2. Understanding Data Wrangling/5. Which weekday do people bike the most.mp416.96MB
2. Understanding Data Wrangling/6. Which month was the snowiest.mp420.43MB
2. Understanding Data Wrangling/7. Cleaning Messy Data.mp432.02MB
2. Understanding Data Wrangling/8. How to deal with timestamps.mp416.37MB
2. Understanding Data Wrangling/8.2 popularity-contest.tsv.tsv185.24KB
2. Understanding Data Wrangling/9. Loading data from SQL databases.mp413.45MB
3. Linear Regression/1. Introduction.mp41.74MB
3. Linear Regression/10. Model evaluation.mp410.73MB
3. Linear Regression/11. Handling categorical features.mp419.83MB
3. Linear Regression/12. Summary.mp45.45MB
3. Linear Regression/2. What is linear regression.mp42.83MB
3. Linear Regression/3. The advertising dataset.mp47.09MB
3. Linear Regression/4. EDA questions on advertising data.mp44.72MB
3. Linear Regression/5. Simple Linear Regression.mp421.9MB
3. Linear Regression/6. Hypothesis testing and p-values.mp47.83MB
3. Linear Regression/7. R squared.mp45.77MB
3. Linear Regression/8. Multiple linear regression.mp415.34MB
3. Linear Regression/9. Model and feature selection.mp47.09MB
4. Logistic Regression/1. Introduction.mp4891.31KB
4. Logistic Regression/10. Summary.mp4896.84KB
4. Logistic Regression/2. Predicting a continuous response.mp411.59MB
4. Logistic Regression/3. Quick refresher on linear regression.mp44.9MB
4. Logistic Regression/4. Predicting a categorical response.mp415.7MB
4. Logistic Regression/5. Using logistic regression.mp411.37MB
4. Logistic Regression/6. Probability, odds, log-odds.mp415.05MB
4. Logistic Regression/7. What is logistic regression.mp410.91MB
4. Logistic Regression/8. Interpreting logistic regression.mp416.3MB
4. Logistic Regression/9. Using logistic regression with categorical features.mp47.25MB
5. Cross Validation/1. Introduction.mp4891.74KB
5. Cross Validation/2. Traintest split.mp47.45MB
5. Cross Validation/3. K-fold cross-validation.mp48.03MB
5. Cross Validation/4. Cross-validation continued.mp415.89MB
5. Cross Validation/5. Summary.mp44.87MB
6. Regularization/1. Introduction.mp41.17MB
6. Regularization/2. Overfitting.mp44.7MB
6. Regularization/3. Overfitting with linear models.mp412.52MB
6. Regularization/4. Regularizing linear models.mp416.89MB
6. Regularization/5. Ridge and Lasso Regularization.mp48.86MB
6. Regularization/6. Regularization using scikit-learn.mp422.89MB
6. Regularization/7. Regularizing logistic models.mp411.18MB
6. Regularization/8. Pipeline and GridSearchCV.mp412.59MB
6. Regularization/9. Comparing regularized with unregularized models.mp43.22MB