种子简介
种子名称:
[Udemy] Data Analysis with Pandas and Python (11.2021)
文件类型:
视频
文件数目:
166个文件
文件大小:
4.17 GB
收录时间:
2022-4-23 10:47
已经下载:
3次
资源热度:
210
最近下载:
2024-11-25 02:26
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:c9d27c46ffa66384ecd5ffb17939303cebab5f69&dn=[Udemy] Data Analysis with Pandas and Python (11.2021)
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
[Udemy] Data Analysis with Pandas and Python (11.2021).torrent
01 - Installation and Setup/001 Introduction to Data Analysis with Pandas and Python.mp4125.34MB
01 - Installation and Setup/002 About Me.mp45.99MB
01 - Installation and Setup/004 macOS - Download the Anaconda Distribution, our Python development environment.mp49.82MB
01 - Installation and Setup/005 macOS - Install Anaconda Distribution.mp441.22MB
01 - Installation and Setup/006 macOS - Access the Terminal Application.mp451.78MB
01 - Installation and Setup/007 macOS - Create conda Environment and Install pandas and Jupyter Notebook.mp459.24MB
01 - Installation and Setup/008 macOS - Unpack Course Materials + The Start and Shutdown Process.mp451.96MB
01 - Installation and Setup/009 Windows - Download the Anaconda Distribution.mp410.19MB
01 - Installation and Setup/010 Windows - Install Anaconda Distribution.mp416.31MB
01 - Installation and Setup/011 Windows - Create conda Environment and Install pandas and Jupyter Notebook.mp447.74MB
01 - Installation and Setup/012 Windows - Unpack Course Materials + The Startdown and Shutdown Process.mp427.14MB
01 - Installation and Setup/013 Intro to the Jupyter Notebook Interface.mp416.26MB
01 - Installation and Setup/014 Cell Types and Cell Modes in Jupyter Notebook.mp410.48MB
01 - Installation and Setup/015 Code Cell Execution in Jupyter Notebook.mp44.67MB
01 - Installation and Setup/016 Popular Keyboard Shortcuts in Jupyter Notebook.mp48.11MB
01 - Installation and Setup/017 Import Libraries into Jupyter Notebook.mp414.47MB
02 - BONUS_ Python Crash Course/001 Intro to the Python Crash Course.mp47.59MB
02 - BONUS_ Python Crash Course/002 Comments.mp44.1MB
02 - BONUS_ Python Crash Course/003 Basic Data Types.mp418.21MB
02 - BONUS_ Python Crash Course/004 Operators.mp428MB
02 - BONUS_ Python Crash Course/005 Variables.mp413.29MB
02 - BONUS_ Python Crash Course/006 Built-in Functions.mp418.32MB
02 - BONUS_ Python Crash Course/007 Custom Functions.mp430.91MB
02 - BONUS_ Python Crash Course/008 String Methods.mp440.14MB
02 - BONUS_ Python Crash Course/009 Lists.mp428.38MB
02 - BONUS_ Python Crash Course/010 Index Positions and Slicing.mp430.01MB
02 - BONUS_ Python Crash Course/011 Dictionaries.mp429.06MB
03 - Series/001 Create Jupyter Notebook for the Series Module.mp42.95MB
03 - Series/002 Create A Series Object from a Python List.mp422.59MB
03 - Series/003 Create A Series Object from a Python Dictionary.mp46.53MB
03 - Series/005 Intro to Attributes on a Series Object.mp418.87MB
03 - Series/006 Intro to Methods on a Series Object.mp49.53MB
03 - Series/007 Parameters and Arguments.mp429.7MB
03 - Series/008 Create Series from Dataset with the pd.read_csv Method.mp429.41MB
03 - Series/010 Use the head and tail Methods to Return Rows from Beginning and End of Dataset.mp48.55MB
03 - Series/011 Passing pandas Objects to Python Built-In Functions.mp412.15MB
03 - Series/012 Accessing More Series Attributes.mp425.61MB
03 - Series/013 Use the sort_values method to sort a Series in ascending or descending order.mp428.49MB
03 - Series/014 Use the inplace Parameter to permanently mutate a pandas data structure.mp414.34MB
03 - Series/015 Use the sort_index Method to Sort the Index of a pandas Series object.mp411.23MB
03 - Series/017 Use Python's in Keyword to Check for Inclusion in Series values or index.mp49.2MB
03 - Series/018 Extract Series Values by Index Positiox.mp423.5MB
03 - Series/019 Extract Series Values by Index Label.mp422.1MB
03 - Series/021 Use the get Method to Retrieve a Value for an index label in a Series.mp420.63MB
03 - Series/022 Math Methods on Series Objects.mp415.28MB
03 - Series/023 Use the idxmax and idxmin Methods to Find Index of Greatest or Smallest Value.mp48.78MB
03 - Series/024 Use the value_counts Method to See Counts of Unique Values within a Series.mp48.18MB
03 - Series/025 Use the apply Method to Invoke a Function on Every Series Values.mp418.33MB
03 - Series/026 The Series#map Method.mp422.63MB
04 - DataFrames I_ Introduction/001 Intro to DataFrames I Module.mp449.79MB
04 - DataFrames I_ Introduction/002 Shared Methods and Attributes between Series and DataFrames.mp442.53MB
04 - DataFrames I_ Introduction/003 Differences between Shared Methods.mp427.01MB
04 - DataFrames I_ Introduction/004 Select One Column from a DataFrame.mp442.2MB
04 - DataFrames I_ Introduction/006 Select Two or More Columns from a DataFrame.mp413.01MB
04 - DataFrames I_ Introduction/008 Add New Column to DataFrame.mp440.64MB
04 - DataFrames I_ Introduction/009 Broadcasting Operations on DataFrames.mp431.24MB
04 - DataFrames I_ Introduction/010 A Review of the value_counts Method.mp47.95MB
04 - DataFrames I_ Introduction/011 Drop DataFrame Rows with Null Values with the dropna Method.mp437.16MB
04 - DataFrames I_ Introduction/013 Fill in Null DataFrame Values with the fillna Method.mp414.77MB
04 - DataFrames I_ Introduction/014 Convert DataFrame Column Types with the astype Method.mp460.72MB
04 - DataFrames I_ Introduction/015 Sort a DataFrame with the sort_values Method, Part I.mp443.29MB
04 - DataFrames I_ Introduction/016 Sort a DataFrame with the sort_values Method, Part II.mp417.16MB
04 - DataFrames I_ Introduction/018 Sort DataFrame Indexwith the sort_index Method.mp418.7MB
04 - DataFrames I_ Introduction/019 Rank Series Values with the rank Method.mp421.78MB
05 - DataFrames II_ Filtering Data/001 This Module's Dataset + Memory Optimization.mp475.27MB
05 - DataFrames II_ Filtering Data/002 Filter a DataFrame Based on A Condition.mp482.28MB
05 - DataFrames II_ Filtering Data/003 Filter DataFrame with More than One Condition (AND - &).mp414.76MB
05 - DataFrames II_ Filtering Data/004 Filter DataFrame with More than One Condition (OR - _).mp427.47MB
05 - DataFrames II_ Filtering Data/005 Check for Inclusion with the isin Method.mp420.56MB
05 - DataFrames II_ Filtering Data/006 Check for Null and Present DataFrame Values with the isnull and notnull Methods.mp418.75MB
05 - DataFrames II_ Filtering Data/007 Check For Inclusion Within a Range of Values with the between Method.mp426.54MB
05 - DataFrames II_ Filtering Data/008 Check for Duplicate DataFrame Rows with the duplicated Method.mp453.7MB
05 - DataFrames II_ Filtering Data/009 Delete Duplicate DataFrame Rows with the drop_duplicates Method.mp432.23MB
05 - DataFrames II_ Filtering Data/010 Identify and Count Unique Values with the unique and nunique Methods.mp47.56MB
06 - DataFrames III_ Data Extraction/001 Intro to the DataFrames III Module + Import Dataset.mp412.48MB
06 - DataFrames III_ Data Extraction/002 Use the set_index and reset_index methods to define a new DataFrame index.mp417.59MB
06 - DataFrames III_ Data Extraction/003 Retrieve Rows by Index Label with loc Accessor.mp434.39MB
06 - DataFrames III_ Data Extraction/004 Retrieve Rows by Index Position with iloc Accessor.mp417.18MB
06 - DataFrames III_ Data Extraction/005 Passing second arguments to the loc and iloc Accessors.mp425.65MB
06 - DataFrames III_ Data Extraction/006 Set New Value for a Specific Cell or Cells In a Row.mp46.52MB
06 - DataFrames III_ Data Extraction/007 Set Multiple Values in a DataFrame.mp416.11MB
06 - DataFrames III_ Data Extraction/008 Rename Index Labels or Columns in a DataFrame.mp458.05MB
06 - DataFrames III_ Data Extraction/009 Delete Rows or Columns from a DataFrame.mp429.04MB
06 - DataFrames III_ Data Extraction/010 Create Random Sample with the sample Method.mp412.35MB
06 - DataFrames III_ Data Extraction/011 Use the nsmallest _ nlargest methods to get rows with smallest _ largest values.mp428.3MB
06 - DataFrames III_ Data Extraction/012 Filter A DataFrame with the where method.mp434.38MB
06 - DataFrames III_ Data Extraction/013 Filter A DataFrame with the query method.mp433.05MB
06 - DataFrames III_ Data Extraction/014 A Review of the apply Method on a pandas Series Object.mp418.63MB
06 - DataFrames III_ Data Extraction/015 Apply a Function to every DataFrame Row with the apply Method.mp417.18MB
06 - DataFrames III_ Data Extraction/016 Create a Copy of a DataFrame with the copy Method.mp436.08MB
07 - Working with Text Data/001 Intro to the Working with Text Data Section.mp414.41MB
07 - Working with Text Data/002 Common String Methods - lower, upper, title, and len.mp447.89MB
07 - Working with Text Data/003 Use the str.replace method to replace all occurrences of character with another.mp438.91MB
07 - Working with Text Data/004 Filter a DataFrame's Rows with String Methods.mp436.08MB
07 - Working with Text Data/005 More DataFrame String Methods - strip, lstrip, and rstrip.mp47.89MB
07 - Working with Text Data/006 Invoke String Methods on DataFrame Index and Columns.mp414.58MB
07 - Working with Text Data/007 Split Strings by Characters with the str.split Method.mp428.23MB
07 - Working with Text Data/008 More Practice with the str.split method on a Series.mp436.36MB
07 - Working with Text Data/009 Exploring the expand and n Parameters of the str.split Method.mp427.64MB
08 - MultiIndex/001 Intro to the MultiIndex Module.mp49.84MB
08 - MultiIndex/002 Create a MultiIndex on a DataFrame with the set_index Method.mp422.14MB
08 - MultiIndex/003 Extract Index Level Values with the get_level_values Method.mp49.89MB
08 - MultiIndex/004 Change Index Level Name with the set_names Method.mp49.09MB
08 - MultiIndex/005 The sort_index Method on a MultiIndex DataFrame.mp416.77MB
08 - MultiIndex/006 Extract Rows from a MultiIndex DataFrame.mp422.8MB
08 - MultiIndex/007 The transpose Method on a MultiIndex DataFrame.mp417.97MB
08 - MultiIndex/008 The .swaplevel() Method.mp44.88MB
08 - MultiIndex/009 The .stack() Method.mp436.38MB
08 - MultiIndex/010 The .unstack() Method, Part 1.mp411.42MB
08 - MultiIndex/011 The .unstack() Method, Part 2.mp431.22MB
08 - MultiIndex/012 The .unstack() Method, Part 3.mp427.27MB
08 - MultiIndex/013 The pivot Method.mp415.72MB
08 - MultiIndex/014 Use the pivot_table method to create an aggregate summary of a DataFrame.mp432.73MB
08 - MultiIndex/015 Use the pd.melt method to create a narrow dataset from a wide one.mp447.79MB
09 - The GroupBy Object/001 Intro to the Groupby Module.mp423.13MB
09 - The GroupBy Object/002 First Operations with groupby Object.mp461.64MB
09 - The GroupBy Object/003 Retrieve a group from a GroupBy object with the get_group Method.mp49.18MB
09 - The GroupBy Object/004 Methods on the Groupby Object and DataFrame Columns.mp433.03MB
09 - The GroupBy Object/005 Grouping by Multiple Columns.mp424.47MB
09 - The GroupBy Object/006 The .agg() Method.mp441.47MB
09 - The GroupBy Object/007 Iterating through Groups.mp433.74MB
10 - Merging, Joining, and Concatenating DataFrames/001 Intro to the Merging, Joining, and Concatenating Section.mp411.89MB
10 - Merging, Joining, and Concatenating DataFrames/002 The pd.concat Method, Part 1.mp410.48MB
10 - Merging, Joining, and Concatenating DataFrames/003 The pd.concat Method, Part 2.mp415.31MB
10 - Merging, Joining, and Concatenating DataFrames/004 Inner Joins, Part 1.mp443.41MB
10 - Merging, Joining, and Concatenating DataFrames/005 Inner Joins, Part 2.mp420.8MB
10 - Merging, Joining, and Concatenating DataFrames/006 Outer Joins.mp459.65MB
10 - Merging, Joining, and Concatenating DataFrames/007 Left Joins.mp463.15MB
10 - Merging, Joining, and Concatenating DataFrames/008 The left_on and right_on Parameters.mp448.52MB
10 - Merging, Joining, and Concatenating DataFrames/009 Merging by Indexes with the left_index and right_index Parameters.mp453.98MB
10 - Merging, Joining, and Concatenating DataFrames/010 The .join() Method.mp45.49MB
10 - Merging, Joining, and Concatenating DataFrames/011 The pd.merge() Method.mp410.28MB
11 - Working with Dates and Times in Datasets/001 Intro to the Working with Dates and Times Module.mp45.58MB
11 - Working with Dates and Times in Datasets/002 Review of Python's datetime Module.mp429.2MB
11 - Working with Dates and Times in Datasets/003 The pandas Timestamp Object.mp417.4MB
11 - Working with Dates and Times in Datasets/004 The pandas DateTimeIndex Object.mp413.06MB
11 - Working with Dates and Times in Datasets/005 The pd.to_datetime() Method.mp450MB
11 - Working with Dates and Times in Datasets/006 Create Range of Dates with the pd.date_range() Method, Part 1.mp462.28MB
11 - Working with Dates and Times in Datasets/007 Create Range of Dates with the pd.date_range() Method, Part 2.mp456.29MB
11 - Working with Dates and Times in Datasets/008 Create Range of Dates with the pd.date_range() Method, Part 3.mp425.69MB
11 - Working with Dates and Times in Datasets/009 The .dt Accessor.mp417.51MB
11 - Working with Dates and Times in Datasets/010 Install pandas-datareader Library.mp422.6MB
11 - Working with Dates and Times in Datasets/011 Import Financial Data Set with pandas_datareader Library.mp419.23MB
11 - Working with Dates and Times in Datasets/012 Selecting Rows from a DataFrame with a DateTimeIndex.mp432.14MB
11 - Working with Dates and Times in Datasets/013 Timestamp Object Attributes and Methods.mp428.3MB
11 - Working with Dates and Times in Datasets/014 The pd.DateOffset Object.mp418.74MB
11 - Working with Dates and Times in Datasets/015 Timeseries Offsets.mp432.43MB
11 - Working with Dates and Times in Datasets/016 The Timedelta Object.mp417.06MB
11 - Working with Dates and Times in Datasets/017 Timedeltas in a Dataset.mp432.94MB
12 - Input and Output in pandas/001 Intro to the Input and Output Section.mp41.92MB
12 - Input and Output in pandas/002 Pass a URL to the pd.read_csv Method.mp419.83MB
12 - Input and Output in pandas/003 Quick Object Conversions.mp421.65MB
12 - Input and Output in pandas/004 Export CSV File with the to_csv Method.mp424.83MB
12 - Input and Output in pandas/005 Install xlrd and openpyxl Libraries to Read and Write Excel Files.mp411.39MB
12 - Input and Output in pandas/006 Import Excel File into pandas with the read_excel Method.mp439.23MB
12 - Input and Output in pandas/007 Export Excel File with the to_excel Method.mp436.88MB
13 - Visualization/001 Intro to Visualization Section.mp46.27MB
13 - Visualization/002 Use the plot Method to Render a Line Chart.mp416.24MB
13 - Visualization/003 Modifying Plot Aesthetics with matplotlib Templates.mp413.8MB
13 - Visualization/004 Creating Bar Graphs to Show Counts.mp413.45MB
13 - Visualization/005 Creating Pie Charts to Represent Proportions.mp410.7MB
14 - Options and Settings in pandas/001 Introduction to the Options and Settings Module.mp42.54MB
14 - Options and Settings in pandas/002 Changing pandas Options with Attributes and Dot Syntax.mp440.81MB
14 - Options and Settings in pandas/003 Changing pandas Options with Methods.mp432.99MB
14 - Options and Settings in pandas/004 The precision Option.mp412.93MB
15 - Conclusion/001 Conclusion.mp42.39MB