种子简介
种子名称:
[DesireCourse.Com] Udemy - R Programming Advanced Analytics In R For Data Science
文件类型:
视频
文件数目:
46个文件
文件大小:
1.49 GB
收录时间:
2019-9-20 22:58
已经下载:
3次
资源热度:
152
最近下载:
2025-1-27 02:55
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:cd4d19fe9c9ddf8cede7a13524d48ea55bb77fac&dn=[DesireCourse.Com] Udemy - R Programming Advanced Analytics In R For Data Science
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
[DesireCourse.Com] Udemy - R Programming Advanced Analytics In R For Data Science.torrent
01 Welcome To The Course/001 Welcome to the Advanced R Programming Course.mp446.12MB
02 Data Preparation/002 Welcome to this section. This is what you will learn.mp447.74MB
02 Data Preparation/003 Project Brief Financial Review.mp47.53MB
02 Data Preparation/004 Import Data into R.mp423.58MB
02 Data Preparation/005 What are Factors Refresher.mp437.56MB
02 Data Preparation/006 The Factor Variable Trap.mp428.82MB
02 Data Preparation/007 FVT Example.mp428.3MB
02 Data Preparation/008 gsub and sub.mp443.97MB
02 Data Preparation/009 Dealing with Missing Data.mp445.6MB
02 Data Preparation/010 What is an NA.mp417.45MB
02 Data Preparation/011 An Elegant Way To Locate Missing Data.mp457.07MB
02 Data Preparation/012 Data Filters which for Non-Missing Data.mp437.1MB
02 Data Preparation/013 Data Filters is.na for Missing Data.mp425.96MB
02 Data Preparation/014 Removing records with missing data.mp430.15MB
02 Data Preparation/015 Reseting the dataframe index.mp443.85MB
02 Data Preparation/016 Replacing Missing Data Factual Analysis Method.mp431.6MB
02 Data Preparation/017 Replacing Missing Data Median Imputation Method Part 1.mp461.94MB
02 Data Preparation/018 Replacing Missing Data Median Imputation Method Part 2.mp420MB
02 Data Preparation/019 Replacing Missing Data Median Imputation Method Part 3.mp424.44MB
02 Data Preparation/020 Replacing Missing Data Deriving Values Method.mp423.23MB
02 Data Preparation/021 Visualizing results.mp440.09MB
02 Data Preparation/022 Section Recap.mp411.08MB
03 Lists in R/023 Welcome to this section. This is what you will learn.mp431.81MB
03 Lists in R/024 Project Brief Machine Utilization.mp461.76MB
03 Lists in R/025 Import Data Into R.mp418.62MB
03 Lists in R/026 Handling Date-Times in R.mp450.07MB
03 Lists in R/027 What is a List.mp444.74MB
03 Lists in R/028 Naming components of a list.mp413.93MB
03 Lists in R/029 Extracting components lists vs vs.mp419.99MB
03 Lists in R/030 Adding and deleting components.mp438.47MB
03 Lists in R/031 Subsetting a list.mp428.59MB
03 Lists in R/032 Creating A Timeseries Plot.mp445.87MB
03 Lists in R/033 Section Recap.mp46.56MB
04 Apply Family of Functions/034 Welcome to this section. This is what you will learn.mp449.49MB
04 Apply Family of Functions/035 Project Brief Weather Patterns.mp431.95MB
04 Apply Family of Functions/036 Import Data into R.mp433.75MB
04 Apply Family of Functions/037 What is the Apply family.mp418.69MB
04 Apply Family of Functions/038 Using apply.mp432.94MB
04 Apply Family of Functions/039 Recreating the apply function with loops advanced topic.mp423.93MB
04 Apply Family of Functions/040 Using lapply.mp448.6MB
04 Apply Family of Functions/041 Combining lapply with.mp430.18MB
04 Apply Family of Functions/042 Adding your own functions.mp433.21MB
04 Apply Family of Functions/043 Using sapply.mp443.55MB
04 Apply Family of Functions/044 Nesting apply functions.mp430.82MB
04 Apply Family of Functions/045 which.max and which.min advanced topic.mp440.43MB
04 Apply Family of Functions/046 Section Recap.mp49.83MB