种子简介
种子名称:
[DesireCourse.Net] Udemy - Machine Learning, incl. Deep Learning, with R
文件类型:
视频
文件数目:
142个文件
文件大小:
7.26 GB
收录时间:
2019-11-4 19:16
已经下载:
3次
资源热度:
155
最近下载:
2025-1-1 11:52
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:d5ce2fe57610935eb092ba56c6961a76bf1ab5c9&dn=[DesireCourse.Net] Udemy - Machine Learning, incl. Deep Learning, with R
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
[DesireCourse.Net] Udemy - Machine Learning, incl. Deep Learning, with R.torrent
1. Introduction/1. Course Overview.mp410.37MB
1. Introduction/2. AI 101.mp429.52MB
1. Introduction/3. Machine Learning 101.mp431.15MB
1. Introduction/4. Models.mp427.65MB
1. Introduction/5. Teaser Overview.mp46.24MB
1. Introduction/6. Teaser Lab.mp4126.51MB
10. Random Forests/1. Random Forests 101.mp410.82MB
10. Random Forests/2. Random Forests Interactive.mp417.53MB
10. Random Forests/3. Random Forest Lab (Intro).mp414.84MB
10. Random Forests/4. Random Forest Lab (Coding 12).mp4109.85MB
10. Random Forests/5. Random Forest Lab (Coding 22).mp4107.1MB
10. Random Forests/6. Random Forest Exercise.mp422.07MB
11. Logistic Regression/1. Logistic Regression 101.mp427.64MB
11. Logistic Regression/2. Logistic Regression Lab (Intro).mp48.79MB
11. Logistic Regression/3. Logistic Regression Lab (Coding 12).mp491.93MB
11. Logistic Regression/4. Logistic Regression Lab (Coding 22).mp463.11MB
11. Logistic Regression/5. Logistic Regression Exercise.mp410.68MB
12. Support Vector Machines/1. Support Vector Machines 101.mp421.84MB
12. Support Vector Machines/2. Support Vector Machines Lab (Intro).mp413.6MB
12. Support Vector Machines/3. Support Vector Machines Lab (Coding 12).mp478.82MB
12. Support Vector Machines/4. Support Vector Machines Lab (Coding 22).mp442.15MB
12. Support Vector Machines/5. Support Vector Machines Exercise.mp421.2MB
13. Ensemble Models/1. Ensemble Models 101.mp412.06MB
14. ----- Association Rules -----/1. Association Rules 101.mp420.87MB
14. ----- Association Rules -----/2. How to get the code.mp48.83MB
15. Apriori/1. Apriori 101.mp429.9MB
15. Apriori/2. Apriori Lab (Intro).mp418.09MB
15. Apriori/3. Apriori Lab (Coding 12).mp473.35MB
15. Apriori/4. Apriori Lab (Coding 22).mp4113.44MB
15. Apriori/5. Apriori Exercise.mp417.25MB
15. Apriori/6. Apriori Solution.mp4100.14MB
16. ----- Clustering -----/1. Clustering Overview.mp410.12MB
16. ----- Clustering -----/2. How to get the code.mp48.81MB
17. kmeans/1. kmeans 101.mp431.74MB
17. kmeans/2. kmeans Lab.mp4159.88MB
17. kmeans/3. kmeans Exercise.mp427.55MB
17. kmeans/4. kmeans Solution.mp4106.36MB
18. Hierarchical Clustering/1. Hierarchical Clustering 101.mp432.4MB
18. Hierarchical Clustering/2. Hierarchical Clustering Interactive.mp434.11MB
18. Hierarchical Clustering/3. Hierarchical Clustering Lab.mp4189.25MB
19. Dbscan/1. Dbscan 101.mp431.32MB
19. Dbscan/2. Dbscan Lab.mp4111.43MB
2. R Refresher/1. R and RStudio Installation.mp4102.32MB
2. R Refresher/2. How to get the code.mp48.83MB
2. R Refresher/3. Rmarkdown Lab.mp465.81MB
2. R Refresher/4. Piping 101.mp49.41MB
2. R Refresher/5. Data Manipulation Lab.mp4104.59MB
2. R Refresher/6. Data Reshaping 101.mp418.81MB
2. R Refresher/7. Data Reshaping Lab.mp4103.14MB
2. R Refresher/8. Packages Preparation Lab.mp412.32MB
21. Principal Component Analysis (PCA)/1. PCA 101.mp441.79MB
21. Principal Component Analysis (PCA)/2. PCA Lab.mp4126.99MB
21. Principal Component Analysis (PCA)/3. PCA Exercise.mp415.24MB
21. Principal Component Analysis (PCA)/4. PCA Solution.mp480.96MB
22. t-SNE/1. t-SNE 101.mp419.97MB
22. t-SNE/2. t-SNE Lab (Sphere).mp457.38MB
22. t-SNE/3. t-SNE Lab (Mnist).mp470.37MB
23. Factor Analysis/1. Factor Analysis 101.mp434.98MB
23. Factor Analysis/2. Factor Analysis Lab (Intro).mp416.51MB
23. Factor Analysis/3. Factor Analysis Lab (Coding 12).mp478.66MB
23. Factor Analysis/4. Factor Analysis Lab (Coding 22).mp491.7MB
23. Factor Analysis/5. Factor Analysis Exercise.mp413.23MB
24. ----- Reinforcement Learning -----/1. Reinforcement Learning 101.mp437.44MB
24. ----- Reinforcement Learning -----/2. Upper Confidence Bound 101.mp450.41MB
24. ----- Reinforcement Learning -----/3. Upper Confidence Bound Interactive.mp446.49MB
24. ----- Reinforcement Learning -----/4. How to get the code.mp48.83MB
24. ----- Reinforcement Learning -----/5. Upper Confidence Bound Lab (Intro).mp413.12MB
24. ----- Reinforcement Learning -----/6. Upper Confidence Bound Lab (Coding 12).mp4138.26MB
24. ----- Reinforcement Learning -----/7. Upper Confidence Bound Lab (Coding 22).mp467.11MB
25. ----- Deep Learning -----/1. Deep Learning General Overview.mp426.37MB
25. ----- Deep Learning -----/10. How to get the code.mp48.82MB
25. ----- Deep Learning -----/11. Python and Keras Installation.mp472.66MB
25. ----- Deep Learning -----/2. Deep Learning Modeling 101.mp412.39MB
25. ----- Deep Learning -----/3. Performance.mp411.16MB
25. ----- Deep Learning -----/4. From Perceptron to Neural Networks.mp419.76MB
25. ----- Deep Learning -----/5. Layer Types.mp421.74MB
25. ----- Deep Learning -----/6. Activation Functions.mp420.74MB
25. ----- Deep Learning -----/7. Loss Function.mp413.88MB
25. ----- Deep Learning -----/8. Optimizer.mp422.33MB
25. ----- Deep Learning -----/9. Deep Learning Frameworks.mp49.47MB
26. Deep Learning Regression/1. Multi-Target Regression Lab (Intro).mp413.33MB
26. Deep Learning Regression/2. Multi-Target Regression Lab (Coding 12).mp4119.06MB
26. Deep Learning Regression/3. Multi-Target Regression Lab (Coding 22).mp498.84MB
27. Deep Learning Classification/1. Binary Classification Lab (Intro).mp415.28MB
27. Deep Learning Classification/2. Binary Classification Lab (Coding 12).mp4121.03MB
27. Deep Learning Classification/3. Binary Classification Lab (Coding 22).mp467.87MB
27. Deep Learning Classification/4. Multi-Label Classification Lab (Intro).mp424.42MB
27. Deep Learning Classification/5. Multi-Label Classification Lab (Coding 13).mp4109.73MB
27. Deep Learning Classification/6. Multi-Label Classification Lab (Coding 23).mp4128.81MB
27. Deep Learning Classification/7. Multi-Label Classification Lab (Coding 33).mp462.74MB
28. Convolutional Neural Networks/1. Convolutional Neural Networks 101.mp444.26MB
28. Convolutional Neural Networks/2. Convolutional Neural Networks Interactive.mp418.16MB
28. Convolutional Neural Networks/3. Convolutional Neural Networks Lab (Intro).mp412.13MB
28. Convolutional Neural Networks/4. Convolutional Neural Networks Lab (Coding).mp4189.77MB
28. Convolutional Neural Networks/5. Convolutional Neural Networks Exercise.mp423.73MB
28. Convolutional Neural Networks/6. Semantic Segmentation 101.mp457.94MB
28. Convolutional Neural Networks/7. Semantic Segmentation Lab (Intro).mp425.49MB
28. Convolutional Neural Networks/8. Semantic Segmentation Lab (Coding).mp425.48MB
29. Autoencoders/1. Autoencoders 101.mp416.71MB
29. Autoencoders/2. Autoencoders Lab (Intro).mp415.11MB
29. Autoencoders/3. Autoencoders Lab (Coding).mp4105.45MB
3. ----- Regression, Model Preparation, and Regularization -----/2. How to get the code.mp48.83MB
30. Transfer Learning and Pretrained Models/1. Transfer Learning and Pretrained Models 101.mp432.78MB
30. Transfer Learning and Pretrained Models/2. Transfer Learning and Pretrained Models Lab (Introduction).mp413.63MB
30. Transfer Learning and Pretrained Models/3. Transfer Learning and Pretrained Models Lab (Coding).mp499.41MB
31. Recurrent Neural Networks/1. Recurrent Neural Networks 101.mp429.49MB
31. Recurrent Neural Networks/2. LSTM Univariate, Multistep Timeseries Prediction (Intro).mp413.62MB
31. Recurrent Neural Networks/3. LSTM Univariate, Multistep Timeseries Prediction (Coding).mp4146.57MB
31. Recurrent Neural Networks/4. LSTM Multivariate, Multistep Timeseries Prediction (Intro).mp412.02MB
31. Recurrent Neural Networks/5. LSTM Multivariate, Multistep Timeseries Prediction (Coding).mp4141.53MB
4. Regression/1. Regression Types 101.mp417.74MB
4. Regression/10. Multivariate Regression Lab.mp4135.7MB
4. Regression/11. Multivariate Regression Exercise.mp413.69MB
4. Regression/12. Multivariate Regression Solution.mp4122.64MB
4. Regression/2. Univariate Regression 101.mp425.59MB
4. Regression/3. Univariate Regression Interactive.mp421.85MB
4. Regression/4. Univariate Regression Lab.mp488.4MB
4. Regression/5. Univariate Regression Exercise.mp418.16MB
4. Regression/6. Univariate Regression Solution.mp471.32MB
4. Regression/7. Polynomial Regression 101.mp411.35MB
4. Regression/8. Polynomial Regression Lab.mp4117.62MB
4. Regression/9. Multivariate Regression 101.mp422.44MB
5. Model Preparation and Evaluation/1. Underfitting Overfitting 101.mp456.1MB
5. Model Preparation and Evaluation/2. Train Validation Test Split 101.mp413.51MB
5. Model Preparation and Evaluation/3. Train Validation Test Split Interactive.mp436MB
5. Model Preparation and Evaluation/4. Train Validation Test Split Lab.mp4117.4MB
5. Model Preparation and Evaluation/5. Resampling Techniques 101.mp417.2MB
5. Model Preparation and Evaluation/6. Resampling Techniques Lab.mp4188.6MB
6. Regularization/1. Regularization 101.mp423.77MB
6. Regularization/2. Regularization Lab.mp4189.57MB
7. ----- Classification -----/2. How to get the code.mp48.84MB
8. Classification Basics/1. Confusion Matrix 101.mp428.88MB
8. Classification Basics/2. ROC Curve 101.mp448.01MB
8. Classification Basics/3. ROC Curve Interactive.mp443.5MB
8. Classification Basics/4. ROC Curve Lab Intro.mp412.6MB
8. Classification Basics/5. ROC Curve Lab 13 (Data Prep, Modeling).mp4118.06MB
8. Classification Basics/6. ROC Curve Lab 23 (Confusion Matrix and ROC).mp470.79MB
8. Classification Basics/7. ROC Curve Lab 33 (ROC, AUC, Cost Function).mp4135.48MB
9. Decision Trees/1. Decision Trees 101.mp420.53MB
9. Decision Trees/2. Decision Trees Lab (Intro).mp410.63MB
9. Decision Trees/3. Decision Trees Lab (Coding).mp4121.02MB
9. Decision Trees/4. Decision Trees Exercise.mp414.13MB