本站已收录 番号和无损神作磁力链接/BT种子 

[DesireCourse.Net] Udemy - Spark and Python for Big Data with PySpark

种子简介

种子名称: [DesireCourse.Net] Udemy - Spark and Python for Big Data with PySpark
文件类型: 视频
文件数目: 63个文件
文件大小: 1.55 GB
收录时间: 2021-10-21 09:39
已经下载: 3
资源热度: 224
最近下载: 2024-12-26 06:41

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:d7e9295b964fe3f778be50b581e39db4d8110b03&dn=[DesireCourse.Net] Udemy - Spark and Python for Big Data with PySpark 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[DesireCourse.Net] Udemy - Spark and Python for Big Data with PySpark.torrent
  • 1. Introduction to Course/1. Introduction.mp411.62MB
  • 1. Introduction to Course/2. Course Overview.mp414.44MB
  • 1. Introduction to Course/4. What is Spark Why Python.mp448.15MB
  • 10. Introduction to Machine Learning with MLlib/1. Introduction to Machine Learning and ISLR.mp418.92MB
  • 10. Introduction to Machine Learning with MLlib/2. Machine Learning with Spark and Python with MLlib.mp451.32MB
  • 11. Linear Regression/1. Linear Regression Theory and Reading.mp49.89MB
  • 11. Linear Regression/2. Linear Regression Documentation Example.mp440.63MB
  • 11. Linear Regression/3. Regression Evaluation.mp411.96MB
  • 11. Linear Regression/4. Linear Regression Example Code Along.mp439.18MB
  • 11. Linear Regression/5. Linear Regression Consulting Project.mp46.75MB
  • 11. Linear Regression/6. Linear Regression Consulting Project Solutions.mp438.76MB
  • 12. Logistic Regression/1. Logistic Regression Theory and Reading.mp420.65MB
  • 12. Logistic Regression/2. Logistic Regression Example Code Along.mp453.37MB
  • 12. Logistic Regression/3. Logistic Regression Code Along.mp441.47MB
  • 12. Logistic Regression/4. Logistic Regression Consulting Project.mp46.33MB
  • 12. Logistic Regression/5. Logistic Regression Consulting Project Solutions.mp433.97MB
  • 13. Decision Trees and Random Forests/1. Tree Methods Theory and Reading.mp414.67MB
  • 13. Decision Trees and Random Forests/2. Tree Methods Documentation Examples.mp434.16MB
  • 13. Decision Trees and Random Forests/3. Decision Tress and Random Forest Code Along Examples.mp449.1MB
  • 13. Decision Trees and Random Forests/4. Random Forest - Classification Consulting Project.mp45.41MB
  • 13. Decision Trees and Random Forests/5. Random Forest Classification Consulting Project Solutions.mp415.92MB
  • 14. K-means Clustering/1. K-means Clustering Theory and Reading.mp412.9MB
  • 14. K-means Clustering/2. KMeans Clustering Documentation Example.mp420.86MB
  • 14. K-means Clustering/3. Clustering Example Code Along.mp427.88MB
  • 14. K-means Clustering/4. Clustering Consulting Project.mp46.6MB
  • 14. K-means Clustering/5. Clustering Consulting Project Solutions.mp423.03MB
  • 15. Collaborative Filtering for Recommender Systems/1. Introduction to Recommender Systems.mp412.68MB
  • 15. Collaborative Filtering for Recommender Systems/2. Recommender System - Code Along Project.mp424.59MB
  • 16. Natural Language Processing/1. Introduction to Natural Language Processing.mp414.33MB
  • 16. Natural Language Processing/2. NLP Tools Part One.mp436.19MB
  • 16. Natural Language Processing/3. NLP Tools Part Two.mp418.86MB
  • 16. Natural Language Processing/4. Natural Language Processing Code Along Project.mp435.2MB
  • 17. Spark Streaming with Python/1. Introduction to Streaming with Spark!.mp432.63MB
  • 17. Spark Streaming with Python/2. Spark Streaming Documentation Example.mp428.57MB
  • 17. Spark Streaming with Python/3. Spark Streaming Twitter Project - Part.mp411.79MB
  • 17. Spark Streaming with Python/4. Spark Streaming Twitter Project - Part Two.mp429.3MB
  • 17. Spark Streaming with Python/5. Spark Streaming Twitter Project - Part Three.mp455.01MB
  • 2. Setting up Python with Spark/1. Set-up Overview.mp410.84MB
  • 3. Local VirtualBox Set-up/1. Local Installation VirtualBox Part 1.mp437.69MB
  • 3. Local VirtualBox Set-up/2. Local Installation VirtualBox Part 2.mp446.48MB
  • 3. Local VirtualBox Set-up/3. Setting up PySpark.mp415.55MB
  • 4. AWS EC2 PySpark Set-up/1. AWS EC2 Set-up Guide.mp45.29MB
  • 4. AWS EC2 PySpark Set-up/2. Creating the EC2 Instance.mp462.98MB
  • 4. AWS EC2 PySpark Set-up/3. SSH with Mac or Linux.mp49.26MB
  • 4. AWS EC2 PySpark Set-up/4. Installations on EC2.mp450.41MB
  • 5. Databricks Setup/1. Databricks Setup.mp427.63MB
  • 6. AWS EMR Cluster Setup/1. AWS EMR Setup.mp445.33MB
  • 7. Python Crash Course/1. Introduction to Python Crash Course.mp43.09MB
  • 7. Python Crash Course/2. Jupyter Notebook Overview.mp413.22MB
  • 7. Python Crash Course/3. Python Crash Course Part One.mp429.52MB
  • 7. Python Crash Course/4. Python Crash Course Part Two.mp422.26MB
  • 7. Python Crash Course/5. Python Crash Course Part Three.mp423.17MB
  • 7. Python Crash Course/6. Python Crash Course Exercises.mp45.01MB
  • 7. Python Crash Course/7. Python Crash Course Exercise Solutions.mp425.11MB
  • 8. Spark DataFrame Basics/1. Introduction to Spark DataFrames.mp44.7MB
  • 8. Spark DataFrame Basics/2. Spark DataFrame Basics.mp421.08MB
  • 8. Spark DataFrame Basics/3. Spark DataFrame Basics Part Two.mp419.72MB
  • 8. Spark DataFrame Basics/4. Spark DataFrame Basic Operations.mp427.58MB
  • 8. Spark DataFrame Basics/5. Groupby and Aggregate Operations.mp428.83MB
  • 8. Spark DataFrame Basics/6. Missing Data.mp417.22MB
  • 8. Spark DataFrame Basics/7. Dates and Timestamps.mp424.13MB
  • 9. Spark DataFrame Project Exercise/1. DataFrame Project Exercise.mp411.9MB
  • 9. Spark DataFrame Project Exercise/2. DataFrame Project Exercise Solutions.mp445.06MB