本站已收录 番号和无损神作磁力链接/BT种子 

GetFreeCourses.Co-Udemy-50-Days 50-Projects - Data Science, Machine Learning Bootcamp

种子简介

种子名称: GetFreeCourses.Co-Udemy-50-Days 50-Projects - Data Science, Machine Learning Bootcamp
文件类型: 视频
文件数目: 316个文件
文件大小: 22.22 GB
收录时间: 2023-7-27 20:40
已经下载: 3
资源热度: 219
最近下载: 2024-11-24 01:39

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:e3be6c89a4f6435c992b4dc65d65e793b0d38e64&dn=GetFreeCourses.Co-Udemy-50-Days 50-Projects - Data Science, Machine Learning Bootcamp 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

GetFreeCourses.Co-Udemy-50-Days 50-Projects - Data Science, Machine Learning Bootcamp.torrent
  • 1. Introduction To The Course/1. Introduction To The Course.mp436.8MB
  • 1. Introduction To The Course/2. Course Outline Video.mp4101.38MB
  • 1. Introduction To The Course/3. Udemy Feedback.mp42.04MB
  • 10. Project-9 Bird Species Prediction Flask App/1. Introduction to Bird Species Prediction.mp421.43MB
  • 10. Project-9 Bird Species Prediction Flask App/2. Importing Libraries And Data.mp457.51MB
  • 10. Project-9 Bird Species Prediction Flask App/3. Data processing Bird Species Prediction.mp430.9MB
  • 10. Project-9 Bird Species Prediction Flask App/4. Creating ML Model.mp494.31MB
  • 10. Project-9 Bird Species Prediction Flask App/5. Creating A Flask App.mp471.95MB
  • 11. Project-10 Intel Image Classification Flask App/1. Introduction.mp425.7MB
  • 11. Project-10 Intel Image Classification Flask App/2. Importing and processing data.mp465.81MB
  • 11. Project-10 Intel Image Classification Flask App/3. Creating a Model.mp488.4MB
  • 11. Project-10 Intel Image Classification Flask App/4. Creating a Flask App.mp459.42MB
  • 12. Project-11 Language Translator App Using IBM Cloud Service -Deploy On Heroku/1. Introduction.mp427.07MB
  • 12. Project-11 Language Translator App Using IBM Cloud Service -Deploy On Heroku/2. Setting Service.mp421.57MB
  • 12. Project-11 Language Translator App Using IBM Cloud Service -Deploy On Heroku/3. Integrating Service.mp496.66MB
  • 12. Project-11 Language Translator App Using IBM Cloud Service -Deploy On Heroku/4. Coding the UI.mp4127.7MB
  • 12. Project-11 Language Translator App Using IBM Cloud Service -Deploy On Heroku/5. Deployment on Heroku.mp4105.33MB
  • 13. Project-12 Predict Views On Advertisement Using IBM Watson -Deploy On Heroku/1. Project Overview.mp413.51MB
  • 13. Project-12 Predict Views On Advertisement Using IBM Watson -Deploy On Heroku/2. Introduction.mp440.31MB
  • 13. Project-12 Predict Views On Advertisement Using IBM Watson -Deploy On Heroku/3. Setting up Watson Studio Part-1.mp471.35MB
  • 13. Project-12 Predict Views On Advertisement Using IBM Watson -Deploy On Heroku/4. Setting up Watson Studio Part-2.mp478.4MB
  • 13. Project-12 Predict Views On Advertisement Using IBM Watson -Deploy On Heroku/5. Deploying the Model on Deployment Center..mp442.43MB
  • 13. Project-12 Predict Views On Advertisement Using IBM Watson -Deploy On Heroku/6. Integrating Watson Service with UI.mp4123.63MB
  • 13. Project-12 Predict Views On Advertisement Using IBM Watson -Deploy On Heroku/7. Deployment on Heroku Cloud.mp4131.46MB
  • 14. Project-13 Laptop Price Predictor -Deploy On Heroku/1. Overview.mp424.14MB
  • 14. Project-13 Laptop Price Predictor -Deploy On Heroku/10. Model Building Part-2.mp4105.15MB
  • 14. Project-13 Laptop Price Predictor -Deploy On Heroku/11. Model Building Part-3.mp4170.87MB
  • 14. Project-13 Laptop Price Predictor -Deploy On Heroku/12. Model Building Part-4.mp495.62MB
  • 14. Project-13 Laptop Price Predictor -Deploy On Heroku/13. Model Building Part-5.mp419.06MB
  • 14. Project-13 Laptop Price Predictor -Deploy On Heroku/14. Integrating with UI.mp4127.94MB
  • 14. Project-13 Laptop Price Predictor -Deploy On Heroku/15. Deployment on Heroku.mp474.59MB
  • 14. Project-13 Laptop Price Predictor -Deploy On Heroku/2. EDA Part-1.mp450.46MB
  • 14. Project-13 Laptop Price Predictor -Deploy On Heroku/3. EDA Part-2.mp498.09MB
  • 14. Project-13 Laptop Price Predictor -Deploy On Heroku/4. EDA Part-3.mp498.63MB
  • 14. Project-13 Laptop Price Predictor -Deploy On Heroku/5. EDA Part-4.mp4105.36MB
  • 14. Project-13 Laptop Price Predictor -Deploy On Heroku/6. EDA Part-5.mp4121.16MB
  • 14. Project-13 Laptop Price Predictor -Deploy On Heroku/7. EDA Part-6.mp4152.65MB
  • 14. Project-13 Laptop Price Predictor -Deploy On Heroku/8. EDA Part-7.mp4114.82MB
  • 14. Project-13 Laptop Price Predictor -Deploy On Heroku/9. Model Building Part-1.mp4156MB
  • 15. Project-14 WhatsApp Text Analyzer -Deploy On Heroku/1. Introduction.mp455MB
  • 15. Project-14 WhatsApp Text Analyzer -Deploy On Heroku/10. Text Analytics Part 3.mp4112.14MB
  • 15. Project-14 WhatsApp Text Analyzer -Deploy On Heroku/11. Text Analytics Part 4.mp4129.42MB
  • 15. Project-14 WhatsApp Text Analyzer -Deploy On Heroku/12. Text Analytics Part 5.mp4109.35MB
  • 15. Project-14 WhatsApp Text Analyzer -Deploy On Heroku/13. Text Analytics Part 6.mp486.41MB
  • 15. Project-14 WhatsApp Text Analyzer -Deploy On Heroku/14. Deployment on Heroku Cloud.mp4105.12MB
  • 15. Project-14 WhatsApp Text Analyzer -Deploy On Heroku/2. Fetching Data from Whatsapp.mp425.73MB
  • 15. Project-14 WhatsApp Text Analyzer -Deploy On Heroku/3. Project Structure.mp465.72MB
  • 15. Project-14 WhatsApp Text Analyzer -Deploy On Heroku/4. Text Processing Part 1.mp4119.08MB
  • 15. Project-14 WhatsApp Text Analyzer -Deploy On Heroku/5. Text Processing Part2.mp4138.36MB
  • 15. Project-14 WhatsApp Text Analyzer -Deploy On Heroku/6. Text Processing Part 3.mp457.96MB
  • 15. Project-14 WhatsApp Text Analyzer -Deploy On Heroku/7. Text Processing Part 4.mp4155.27MB
  • 15. Project-14 WhatsApp Text Analyzer -Deploy On Heroku/8. Text Analytics Part 1.mp4124.66MB
  • 15. Project-14 WhatsApp Text Analyzer -Deploy On Heroku/9. Text Analytics Part 2.mp4106.41MB
  • 16. Project-15 Course Recommendation System -Deploy On Heroku/1. Introduction.mp435.02MB
  • 16. Project-15 Course Recommendation System -Deploy On Heroku/2. Coding Recommendation System.mp4119.28MB
  • 16. Project-15 Course Recommendation System -Deploy On Heroku/3. Integrating with Flask Server.mp4165.65MB
  • 16. Project-15 Course Recommendation System -Deploy On Heroku/4. Exploratory Data Analysis.mp493.49MB
  • 16. Project-15 Course Recommendation System -Deploy On Heroku/5. Integrating Python Code with JavaScript.mp4108.95MB
  • 16. Project-15 Course Recommendation System -Deploy On Heroku/6. Deployment on Heroku Cloud.mp468.61MB
  • 17. Project-16 IPL Match Win Predictor -Deploy On Heroku/1. Introduction.mp425.63MB
  • 17. Project-16 IPL Match Win Predictor -Deploy On Heroku/2. EDA Part 1.mp4123.24MB
  • 17. Project-16 IPL Match Win Predictor -Deploy On Heroku/3. EDA Part 2.mp478.63MB
  • 17. Project-16 IPL Match Win Predictor -Deploy On Heroku/4. EDA Part 3.mp4131.16MB
  • 17. Project-16 IPL Match Win Predictor -Deploy On Heroku/5. EDA Part 4.mp486.18MB
  • 17. Project-16 IPL Match Win Predictor -Deploy On Heroku/6. Model Building.mp4125.28MB
  • 17. Project-16 IPL Match Win Predictor -Deploy On Heroku/7. Coding the UI.mp499.59MB
  • 17. Project-16 IPL Match Win Predictor -Deploy On Heroku/8. Deployment on Heroku Cloud.mp4127.65MB
  • 18. Project-17 Body Fat Estimator App -Deploy On Microsoft Azure/1. Introduction.mp437.79MB
  • 18. Project-17 Body Fat Estimator App -Deploy On Microsoft Azure/10. Model Deployment on Azure Part 1.mp4141.47MB
  • 18. Project-17 Body Fat Estimator App -Deploy On Microsoft Azure/11. Model Deployment on Azure Part 2.mp439.61MB
  • 18. Project-17 Body Fat Estimator App -Deploy On Microsoft Azure/2. EDA Part 1.mp494.73MB
  • 18. Project-17 Body Fat Estimator App -Deploy On Microsoft Azure/3. EDA Part 2.mp493.64MB
  • 18. Project-17 Body Fat Estimator App -Deploy On Microsoft Azure/4. Feature Selection Part 1.mp4106.78MB
  • 18. Project-17 Body Fat Estimator App -Deploy On Microsoft Azure/5. Feature Selection Part 2.mp456.93MB
  • 18. Project-17 Body Fat Estimator App -Deploy On Microsoft Azure/6. Model Building.mp470.92MB
  • 18. Project-17 Body Fat Estimator App -Deploy On Microsoft Azure/7. Model Evaluation.mp469.02MB
  • 18. Project-17 Body Fat Estimator App -Deploy On Microsoft Azure/8. Coding the UI Part 1.mp4109.74MB
  • 18. Project-17 Body Fat Estimator App -Deploy On Microsoft Azure/9. Coding the UI Part 2.mp4129.58MB
  • 19. Project-18 Campus Placement Predictor App -Deploy On Microsoft Azure/1. Introduction.mp440.04MB
  • 19. Project-18 Campus Placement Predictor App -Deploy On Microsoft Azure/10. Coding the UI Part 3.mp4147.77MB
  • 19. Project-18 Campus Placement Predictor App -Deploy On Microsoft Azure/11. Deployment Part 1.mp4145.33MB
  • 19. Project-18 Campus Placement Predictor App -Deploy On Microsoft Azure/12. Deployment Part 2.mp424.92MB
  • 19. Project-18 Campus Placement Predictor App -Deploy On Microsoft Azure/2. Data Preprocessing.mp497.33MB
  • 19. Project-18 Campus Placement Predictor App -Deploy On Microsoft Azure/3. EDA Part 1.mp4120.98MB
  • 19. Project-18 Campus Placement Predictor App -Deploy On Microsoft Azure/4. EDA Part 2.mp468.15MB
  • 19. Project-18 Campus Placement Predictor App -Deploy On Microsoft Azure/5. Feature Selection.mp4132.32MB
  • 19. Project-18 Campus Placement Predictor App -Deploy On Microsoft Azure/6. Model Building.mp457.39MB
  • 19. Project-18 Campus Placement Predictor App -Deploy On Microsoft Azure/7. Hyper Parameter Tuning, Model Testing.mp4152.88MB
  • 19. Project-18 Campus Placement Predictor App -Deploy On Microsoft Azure/8. Coding the UI Part 1.mp457.96MB
  • 19. Project-18 Campus Placement Predictor App -Deploy On Microsoft Azure/9. Coding the UI Part 2.mp4115.14MB
  • 2. Project-1 Pan Card Tempering Detector App -Deploy On Heroku/1. Introduction To Pan Card Tempering Detector.mp416.18MB
  • 2. Project-1 Pan Card Tempering Detector App -Deploy On Heroku/2. Loading libraries and dataset.mp431.45MB
  • 2. Project-1 Pan Card Tempering Detector App -Deploy On Heroku/3. Creating the pancard detector with opencv.mp4106.91MB
  • 2. Project-1 Pan Card Tempering Detector App -Deploy On Heroku/4. Creating the Flask App.mp414.94MB
  • 2. Project-1 Pan Card Tempering Detector App -Deploy On Heroku/5. Creating Important functions.mp429.07MB
  • 2. Project-1 Pan Card Tempering Detector App -Deploy On Heroku/6. Deploy the app in Heroku.mp439.09MB
  • 2. Project-1 Pan Card Tempering Detector App -Deploy On Heroku/7. Testing the deployed pan card detector.mp45.71MB
  • 20. Project-19 Car Acceptability Predictor -Deploy On Google Cloud/1. Introduction.mp453.15MB
  • 20. Project-19 Car Acceptability Predictor -Deploy On Google Cloud/2. Data Preprocessing.mp4120.92MB
  • 20. Project-19 Car Acceptability Predictor -Deploy On Google Cloud/3. Model Building.mp488.47MB
  • 20. Project-19 Car Acceptability Predictor -Deploy On Google Cloud/4. Coding the UI.mp4146MB
  • 20. Project-19 Car Acceptability Predictor -Deploy On Google Cloud/5. Integrating Jinja Framework.mp4134.08MB
  • 20. Project-19 Car Acceptability Predictor -Deploy On Google Cloud/6. Integrating JavaScript with Flask.mp486.2MB
  • 20. Project-19 Car Acceptability Predictor -Deploy On Google Cloud/7. Deployment on GCP (Google Cloud Platform).mp4165.37MB
  • 21. Project-20 Book Genre Classification App -Deploy On Amazon Web Services/1. Introduction.mp444.11MB
  • 21. Project-20 Book Genre Classification App -Deploy On Amazon Web Services/2. Text Processing Part1.mp4127.06MB
  • 21. Project-20 Book Genre Classification App -Deploy On Amazon Web Services/3. Text Processing Part2.mp4110.52MB
  • 21. Project-20 Book Genre Classification App -Deploy On Amazon Web Services/4. Model Building.mp494.66MB
  • 21. Project-20 Book Genre Classification App -Deploy On Amazon Web Services/5. Model Testing.mp460.25MB
  • 21. Project-20 Book Genre Classification App -Deploy On Amazon Web Services/6. Integrating Model with Flask.mp4129.34MB
  • 21. Project-20 Book Genre Classification App -Deploy On Amazon Web Services/7. Touch points on AWS.mp474.57MB
  • 21. Project-20 Book Genre Classification App -Deploy On Amazon Web Services/8. Deploying model on AWS EC2 instance.mp4301.08MB
  • 21. Project-20 Book Genre Classification App -Deploy On Amazon Web Services/9. Fixing the Errors.mp433.95MB
  • 22. Project-21 Sentiment Analysis Django App -Deploy On Heroku/1. Introduction to Sentiment Analysis.mp49.16MB
  • 22. Project-21 Sentiment Analysis Django App -Deploy On Heroku/2. Project Notebook -Google Colab.mp4140.74MB
  • 22. Project-21 Sentiment Analysis Django App -Deploy On Heroku/3. Building Django App.mp471.93MB
  • 22. Project-21 Sentiment Analysis Django App -Deploy On Heroku/4. Deploying App in heroku.mp479.15MB
  • 23. Project-22 Attrition Rate Django Application/1. Introduction.mp49.24MB
  • 23. Project-22 Attrition Rate Django Application/2. Creating Colab Notebook.mp4213.79MB
  • 23. Project-22 Attrition Rate Django Application/3. Creating Django App.mp485.05MB
  • 23. Project-22 Attrition Rate Django Application/4. Deploying App in heroku.mp460.51MB
  • 24. Project-23 Find Legendary Pokemon Django App -Deploy On Heroku/1. Introduction.mp410.3MB
  • 24. Project-23 Find Legendary Pokemon Django App -Deploy On Heroku/2. Creating Colab Notebook.mp4177.19MB
  • 24. Project-23 Find Legendary Pokemon Django App -Deploy On Heroku/3. Creating DJango App.mp4108.23MB
  • 24. Project-23 Find Legendary Pokemon Django App -Deploy On Heroku/4. Deploying App in heroku.mp462.24MB
  • 25. Project-24 Face Detection Streamlit App/1. Introduction.mp411.39MB
  • 25. Project-24 Face Detection Streamlit App/2. Creating The Face App.mp4103.71MB
  • 25. Project-24 Face Detection Streamlit App/3. Creating The face app opencv.mp465.65MB
  • 25. Project-24 Face Detection Streamlit App/4. Creating The face app opencv.mp494.17MB
  • 26. Project-25 Cats Vs Dogs Classification Flask App/1. Introduction To Cats Vs Dogs Classification.mp413.17MB
  • 26. Project-25 Cats Vs Dogs Classification Flask App/2. Creating Project Notebook.mp4244.28MB
  • 26. Project-25 Cats Vs Dogs Classification Flask App/3. Building Model.mp474.73MB
  • 26. Project-25 Cats Vs Dogs Classification Flask App/4. Building Flask App.mp451.88MB
  • 26. Project-25 Cats Vs Dogs Classification Flask App/5. Building Flask App Deployment.mp465.81MB
  • 27. Project-26 Customer Revenue Prediction App -Deploy On Heroku/1. Introduction To Customer Revenue Prediction.mp413.29MB
  • 27. Project-26 Customer Revenue Prediction App -Deploy On Heroku/2. Colab Notebook.mp4201.68MB
  • 27. Project-26 Customer Revenue Prediction App -Deploy On Heroku/3. Creating Flask App.mp4117.99MB
  • 27. Project-26 Customer Revenue Prediction App -Deploy On Heroku/4. Deploying Flask App.mp466.49MB
  • 28. Project-27 Gender From Voice Prediction App -Deploy On Heroku/1. Introduction.mp410.55MB
  • 28. Project-27 Gender From Voice Prediction App -Deploy On Heroku/2. Creating Project Notebook.mp4242.96MB
  • 28. Project-27 Gender From Voice Prediction App -Deploy On Heroku/3. Creating Project App Django.mp4106.65MB
  • 28. Project-27 Gender From Voice Prediction App -Deploy On Heroku/4. Deploying The App.mp461.14MB
  • 29. Project-28 Restaurant Recommendation System/1. Introduction.mp421.29MB
  • 29. Project-28 Restaurant Recommendation System/2. Creating Colab Notebook.mp4116.62MB
  • 29. Project-28 Restaurant Recommendation System/3. Exploratory Data Analysis.mp485.43MB
  • 29. Project-28 Restaurant Recommendation System/4. Data Analysis2.mp4242.88MB
  • 3. Project-2 Dog breed prediction Flask App/1. Introduction to dog breed prediction.mp415.92MB
  • 3. Project-2 Dog breed prediction Flask App/2. Importing the data and libraries.mp456.82MB
  • 3. Project-2 Dog breed prediction Flask App/3. Data Preprocessing.mp430MB
  • 3. Project-2 Dog breed prediction Flask App/4. Build and Train Model.mp473.22MB
  • 3. Project-2 Dog breed prediction Flask App/5. Testing the model.mp418.76MB
  • 3. Project-2 Dog breed prediction Flask App/6. Creating the Flask App.mp428.11MB
  • 3. Project-2 Dog breed prediction Flask App/7. Running the app.mp417.27MB
  • 30. Project-29 Happiness Ranking Django App -Deploy On Heroku/1. Introduction.mp416.33MB
  • 30. Project-29 Happiness Ranking Django App -Deploy On Heroku/2. Project Notebook.mp4240.54MB
  • 30. Project-29 Happiness Ranking Django App -Deploy On Heroku/3. Creating Django App.mp4138.34MB
  • 30. Project-29 Happiness Ranking Django App -Deploy On Heroku/4. Deploying Django App.mp459.39MB
  • 31. Project-30 Forest Fire Prediction Django App -Deploy On Heroku/1. Introduction.mp419.42MB
  • 31. Project-30 Forest Fire Prediction Django App -Deploy On Heroku/2. Project Notebook.mp4207.18MB
  • 31. Project-30 Forest Fire Prediction Django App -Deploy On Heroku/3. Project Notebook Part2.mp476.38MB
  • 31. Project-30 Forest Fire Prediction Django App -Deploy On Heroku/4. Creating Django App.mp4117.09MB
  • 31. Project-30 Forest Fire Prediction Django App -Deploy On Heroku/5. Deploying Django App.mp457.61MB
  • 32. Project-31 Build Car Prices Prediction App -Deploy On Heroku/1. Introduction.mp411.98MB
  • 32. Project-31 Build Car Prices Prediction App -Deploy On Heroku/2. Model building part1.mp462.49MB
  • 32. Project-31 Build Car Prices Prediction App -Deploy On Heroku/3. Model building part2.mp4100.94MB
  • 32. Project-31 Build Car Prices Prediction App -Deploy On Heroku/4. Model building part3.mp4110.8MB
  • 32. Project-31 Build Car Prices Prediction App -Deploy On Heroku/5. Creating Django Application part1.mp476.59MB
  • 32. Project-31 Build Car Prices Prediction App -Deploy On Heroku/6. Creating Django Application part2.mp466.77MB
  • 32. Project-31 Build Car Prices Prediction App -Deploy On Heroku/7. Deploying on Heroku.mp453.56MB
  • 33. Project-32 Build Affair Count Django App -Deploy On Heroku/1. Introduction.mp414.92MB
  • 33. Project-32 Build Affair Count Django App -Deploy On Heroku/2. Model building.mp495.62MB
  • 33. Project-32 Build Affair Count Django App -Deploy On Heroku/3. Feature Building and Selection.mp4103.37MB
  • 33. Project-32 Build Affair Count Django App -Deploy On Heroku/4. Model Building.mp438.48MB
  • 33. Project-32 Build Affair Count Django App -Deploy On Heroku/5. Django Application Introduction.mp443.02MB
  • 33. Project-32 Build Affair Count Django App -Deploy On Heroku/6. Django Application building.mp4111.42MB
  • 33. Project-32 Build Affair Count Django App -Deploy On Heroku/7. Deploying on Heroku.mp440.44MB
  • 34. Project-33 Build Shrooming Predictions App -Deploy On Heroku/1. Introduction.mp414.22MB
  • 34. Project-33 Build Shrooming Predictions App -Deploy On Heroku/2. Importing libraries and Understanding Data.mp4129.52MB
  • 34. Project-33 Build Shrooming Predictions App -Deploy On Heroku/3. Building the model.mp498.62MB
  • 34. Project-33 Build Shrooming Predictions App -Deploy On Heroku/4. Building Django Application.mp4105.91MB
  • 34. Project-33 Build Shrooming Predictions App -Deploy On Heroku/5. Delpoying on Heroku.mp458.83MB
  • 35. Project-34 Google Play App Rating prediction With Deployment On Heroku/1. Introduction.mp412.14MB
  • 35. Project-34 Google Play App Rating prediction With Deployment On Heroku/2. Importing libraries and dataset.mp4108.73MB
  • 35. Project-34 Google Play App Rating prediction With Deployment On Heroku/3. Preprocessing the data.mp474.9MB
  • 35. Project-34 Google Play App Rating prediction With Deployment On Heroku/4. building the model.mp450.9MB
  • 35. Project-34 Google Play App Rating prediction With Deployment On Heroku/5. Django Application.mp494.86MB
  • 35. Project-34 Google Play App Rating prediction With Deployment On Heroku/6. Deploying to Heroku.mp448.15MB
  • 36. Project-35 Build Bank Customers Predictions Django App -Deploy On Heroku/1. Introduction.mp415.24MB
  • 36. Project-35 Build Bank Customers Predictions Django App -Deploy On Heroku/2. Importing Libraries and understanding data.mp4107.5MB
  • 36. Project-35 Build Bank Customers Predictions Django App -Deploy On Heroku/3. Building and training the model.mp4101.15MB
  • 36. Project-35 Build Bank Customers Predictions Django App -Deploy On Heroku/4. Django Application.mp497.98MB
  • 36. Project-35 Build Bank Customers Predictions Django App -Deploy On Heroku/5. Deploying on heroku.mp451.49MB
  • 37. Project-36 Build Artist Sculpture Cost Prediction Django App -Deploy On Heroku/1. Introduction.mp415.88MB
  • 37. Project-36 Build Artist Sculpture Cost Prediction Django App -Deploy On Heroku/2. Understanding the data.mp4111.57MB
  • 37. Project-36 Build Artist Sculpture Cost Prediction Django App -Deploy On Heroku/3. Outliers and Model.mp4154.64MB
  • 37. Project-36 Build Artist Sculpture Cost Prediction Django App -Deploy On Heroku/4. Building Django Application.mp4103.19MB
  • 37. Project-36 Build Artist Sculpture Cost Prediction Django App -Deploy On Heroku/5. Deploying to Heroku.mp454.32MB
  • 38. Project-37 Build Medical Cost Predictions Django App -Deploy On Heroku/1. Introduction.mp412.08MB
  • 38. Project-37 Build Medical Cost Predictions Django App -Deploy On Heroku/2. handling the data.mp4116.27MB
  • 38. Project-37 Build Medical Cost Predictions Django App -Deploy On Heroku/3. Building the model.mp445.79MB
  • 38. Project-37 Build Medical Cost Predictions Django App -Deploy On Heroku/4. Django Application.mp491.54MB
  • 38. Project-37 Build Medical Cost Predictions Django App -Deploy On Heroku/5. Heroku Deployment.mp445.66MB
  • 39. Project-38 Phishing Webpages Classification Django App -Deploy On Heroku/1. Introduction.mp414.96MB
  • 39. Project-38 Phishing Webpages Classification Django App -Deploy On Heroku/2. Understanding the data.mp4112.4MB
  • 39. Project-38 Phishing Webpages Classification Django App -Deploy On Heroku/3. Feature Selection and model building.mp4109.91MB
  • 39. Project-38 Phishing Webpages Classification Django App -Deploy On Heroku/4. Django Application.mp4107.37MB
  • 39. Project-38 Phishing Webpages Classification Django App -Deploy On Heroku/5. Deploying on Heroku.mp459.2MB
  • 4. Project-3 Image Watermarking App -Deploy On Heroku/1. Introduction.mp415.12MB
  • 4. Project-3 Image Watermarking App -Deploy On Heroku/2. Importing libraries and logo.mp425.16MB
  • 4. Project-3 Image Watermarking App -Deploy On Heroku/3. Create text and image watermark.mp475.95MB
  • 4. Project-3 Image Watermarking App -Deploy On Heroku/4. Creating the app.mp463.36MB
  • 4. Project-3 Image Watermarking App -Deploy On Heroku/5. Deploying the app in heroku.mp430MB
  • 40. Project-39 Clothing Fit-Size predictions Django App -Deploy On Heroku/1. Introduction.mp422.53MB
  • 40. Project-39 Clothing Fit-Size predictions Django App -Deploy On Heroku/2. Understanding the data.mp475.09MB
  • 40. Project-39 Clothing Fit-Size predictions Django App -Deploy On Heroku/3. Cleaning the data.mp4109.28MB
  • 40. Project-39 Clothing Fit-Size predictions Django App -Deploy On Heroku/4. Building the model.mp483.69MB
  • 40. Project-39 Clothing Fit-Size predictions Django App -Deploy On Heroku/5. Implementing Django Application.mp484.66MB
  • 40. Project-39 Clothing Fit-Size predictions Django App -Deploy On Heroku/6. Deploying on heroku.mp452.68MB
  • 41. Project-40 Build Similarity In-Text Django App -Deploy On Heroku/1. Introduction.mp430.61MB
  • 41. Project-40 Build Similarity In-Text Django App -Deploy On Heroku/2. Cleaning the data.mp490.92MB
  • 41. Project-40 Build Similarity In-Text Django App -Deploy On Heroku/3. Building the model.mp4130.68MB
  • 41. Project-40 Build Similarity In-Text Django App -Deploy On Heroku/4. Implementing Django web application.mp4105.28MB
  • 41. Project-40 Build Similarity In-Text Django App -Deploy On Heroku/5. Deploying On Heroku.mp455.21MB
  • 42. Project-41 Heart Attack Risk Prediction Using Eval ML (Auto ML)/1. Introduction to the Project.mp423.76MB
  • 42. Project-41 Heart Attack Risk Prediction Using Eval ML (Auto ML)/2. Importing Libraries and Datasets.mp415.69MB
  • 42. Project-41 Heart Attack Risk Prediction Using Eval ML (Auto ML)/3. Data Analysis.mp456.06MB
  • 42. Project-41 Heart Attack Risk Prediction Using Eval ML (Auto ML)/4. Model Building Part.mp446.71MB
  • 42. Project-41 Heart Attack Risk Prediction Using Eval ML (Auto ML)/5. Model Building Part 2.mp433.63MB
  • 42. Project-41 Heart Attack Risk Prediction Using Eval ML (Auto ML)/6. Model building and Predictions using Auto ML(Eval ML).mp461.4MB
  • 43. Project-42 Credit Card Fraud Detection Using Pycaret (Auto ML)/1. Introduction to the Project.mp429.56MB
  • 43. Project-42 Credit Card Fraud Detection Using Pycaret (Auto ML)/2. Importing Libraries and DataSet.mp427.4MB
  • 43. Project-42 Credit Card Fraud Detection Using Pycaret (Auto ML)/3. Data Analysis.mp443.33MB
  • 43. Project-42 Credit Card Fraud Detection Using Pycaret (Auto ML)/4. Model Building using ML.mp458.32MB
  • 43. Project-42 Credit Card Fraud Detection Using Pycaret (Auto ML)/5. Model Building and Prediction using PyCaret (AutoML).mp497.03MB
  • 44. Project-43 Flight Fare Prediction Using Auto SK Learn (Auto ML)/1. Introduction to the Project.mp421.9MB
  • 44. Project-43 Flight Fare Prediction Using Auto SK Learn (Auto ML)/2. Importing Libraries and DataSet.mp445.2MB
  • 44. Project-43 Flight Fare Prediction Using Auto SK Learn (Auto ML)/3. Data Analysis.mp431.66MB
  • 44. Project-43 Flight Fare Prediction Using Auto SK Learn (Auto ML)/4. Feature Engineering 1.mp443.61MB
  • 44. Project-43 Flight Fare Prediction Using Auto SK Learn (Auto ML)/5. Feature Engineering 2.mp450.68MB
  • 44. Project-43 Flight Fare Prediction Using Auto SK Learn (Auto ML)/6. Feature Selection.mp425.02MB
  • 44. Project-43 Flight Fare Prediction Using Auto SK Learn (Auto ML)/7. Model Building using ML.mp438.48MB
  • 44. Project-43 Flight Fare Prediction Using Auto SK Learn (Auto ML)/8. Model Building and Prediction using Auto SK Learn.mp441.89MB
  • 45. Project-44 Petrol Price Forecasting Using Auto Keras/1. Introduction to the Project.mp430.61MB
  • 45. Project-44 Petrol Price Forecasting Using Auto Keras/2. Importing Libraries and Data Set.mp420.01MB
  • 45. Project-44 Petrol Price Forecasting Using Auto Keras/3. Data Analysis and splitting of Data.mp439.97MB
  • 45. Project-44 Petrol Price Forecasting Using Auto Keras/4. Data Preprocessing.mp436.82MB
  • 45. Project-44 Petrol Price Forecasting Using Auto Keras/5. Model Building and Prediction using LSTM model.mp432.58MB
  • 45. Project-44 Petrol Price Forecasting Using Auto Keras/6. Model Building and prediction using ARIMA and Auto Keras (Auto ML).mp437.51MB
  • 46. Project-45 Bank Customer Churn Prediction Using H2O Auto ML/1. Introduction to the Project.mp433.05MB
  • 46. Project-45 Bank Customer Churn Prediction Using H2O Auto ML/2. Importing Libraries and DataSet.mp425.04MB
  • 46. Project-45 Bank Customer Churn Prediction Using H2O Auto ML/3. Data Analysis.mp465.22MB
  • 46. Project-45 Bank Customer Churn Prediction Using H2O Auto ML/4. Feature Engineering.mp447.36MB
  • 46. Project-45 Bank Customer Churn Prediction Using H2O Auto ML/5. Model Building and Prediction using ANN.mp434.15MB
  • 46. Project-45 Bank Customer Churn Prediction Using H2O Auto ML/6. Model Building and Prediction using H2O Auto ML(Auto ML).mp491.9MB
  • 47. Project-46 Air Quality Index Predictor Using TPOT With Deployment (Auto ML)/1. Introduction to the Project.mp435.39MB
  • 47. Project-46 Air Quality Index Predictor Using TPOT With Deployment (Auto ML)/2. Importing Libraries and Data sets.mp431.01MB
  • 47. Project-46 Air Quality Index Predictor Using TPOT With Deployment (Auto ML)/3. Data Analysis.mp467.73MB
  • 47. Project-46 Air Quality Index Predictor Using TPOT With Deployment (Auto ML)/4. Feature Engineering.mp430.66MB
  • 47. Project-46 Air Quality Index Predictor Using TPOT With Deployment (Auto ML)/5. Model Building using ML- 1.mp469.08MB
  • 47. Project-46 Air Quality Index Predictor Using TPOT With Deployment (Auto ML)/6. Model Building using ML- 2.mp445.06MB
  • 47. Project-46 Air Quality Index Predictor Using TPOT With Deployment (Auto ML)/7. Model Building and Predictions using TPOT Library (Auto ML).mp443.4MB
  • 47. Project-46 Air Quality Index Predictor Using TPOT With Deployment (Auto ML)/8. Deployment of Model using Flask API.mp463.35MB
  • 48. Project-47 Rain Prediction Using ML models & PyCaret With Deployment (Auto ML)/1. Introduction to the Project.mp421.45MB
  • 48. Project-47 Rain Prediction Using ML models & PyCaret With Deployment (Auto ML)/2. Importing Libraries and DataSet.mp445.63MB
  • 48. Project-47 Rain Prediction Using ML models & PyCaret With Deployment (Auto ML)/3. Data Analysis and Handling Missing Values- 1.mp438.33MB
  • 48. Project-47 Rain Prediction Using ML models & PyCaret With Deployment (Auto ML)/4. Data Analysis and Handling Missing Values- 2.mp450.05MB
  • 48. Project-47 Rain Prediction Using ML models & PyCaret With Deployment (Auto ML)/5. Feature Engineering.mp470.43MB
  • 48. Project-47 Rain Prediction Using ML models & PyCaret With Deployment (Auto ML)/6. Model Building using ML Algorithms.mp452.84MB
  • 48. Project-47 Rain Prediction Using ML models & PyCaret With Deployment (Auto ML)/7. Model Building and Prediction using PyCaret (AutoML).mp468.96MB
  • 48. Project-47 Rain Prediction Using ML models & PyCaret With Deployment (Auto ML)/8. Using FLASK API.mp450.77MB
  • 48. Project-47 Rain Prediction Using ML models & PyCaret With Deployment (Auto ML)/9. Deploying model using Heroku.mp433.27MB
  • 49. Project-48 Pizza Price Prediction Using ML And EVALML(Auto ML)/1. Introduction to the project.mp426.01MB
  • 49. Project-48 Pizza Price Prediction Using ML And EVALML(Auto ML)/2. Importing Libraries and DataSet.mp435.07MB
  • 49. Project-48 Pizza Price Prediction Using ML And EVALML(Auto ML)/3. Data Analysis.mp467.34MB
  • 49. Project-48 Pizza Price Prediction Using ML And EVALML(Auto ML)/4. Feature Engineering.mp453.75MB
  • 49. Project-48 Pizza Price Prediction Using ML And EVALML(Auto ML)/5. Model Building using ML models.mp443.41MB
  • 49. Project-48 Pizza Price Prediction Using ML And EVALML(Auto ML)/6. Model Building and Prediction using EVAL ML(Auto ML).mp497.74MB
  • 5. Project-4 Traffic sign classification/1. Introduction to traffic sign classification.mp430.82MB
  • 5. Project-4 Traffic sign classification/2. importing the data and libraries.mp457.48MB
  • 5. Project-4 Traffic sign classification/3. Image processing.mp445.06MB
  • 5. Project-4 Traffic sign classification/4. creating and testing the model.mp462.08MB
  • 5. Project-4 Traffic sign classification/5. Creating model for test set.mp447.38MB
  • 50. Project-49 IPL Cricket Score Prediction Using TPOT (Auto ML)/1. Introduction to the Project.mp434.45MB
  • 50. Project-49 IPL Cricket Score Prediction Using TPOT (Auto ML)/2. Importing Libraries and DataSet.mp440.77MB
  • 50. Project-49 IPL Cricket Score Prediction Using TPOT (Auto ML)/3. Data Analysis and Cleaning.mp451.95MB
  • 50. Project-49 IPL Cricket Score Prediction Using TPOT (Auto ML)/4. Data Preprocessing.mp456.64MB
  • 50. Project-49 IPL Cricket Score Prediction Using TPOT (Auto ML)/5. Model Building using ML Algorithms.mp459.13MB
  • 50. Project-49 IPL Cricket Score Prediction Using TPOT (Auto ML)/6. Model Building using TPOT Auto ML Library-1.mp444.33MB
  • 50. Project-49 IPL Cricket Score Prediction Using TPOT (Auto ML)/7. Model Building using TPOT Auto ML Library-2.mp426.94MB
  • 51. Project-50 Predicting Bike Rentals Count Using ML And H2O Auto ML/1. Introduction to the Project.mp443.39MB
  • 51. Project-50 Predicting Bike Rentals Count Using ML And H2O Auto ML/2. Importing libraries and DataSet.mp433.94MB
  • 51. Project-50 Predicting Bike Rentals Count Using ML And H2O Auto ML/3. Data Analysis and Cleaning -1.mp468.59MB
  • 51. Project-50 Predicting Bike Rentals Count Using ML And H2O Auto ML/4. Data Analysis and Cleaning -2.mp433.7MB
  • 51. Project-50 Predicting Bike Rentals Count Using ML And H2O Auto ML/5. Data Preprocessing.mp431.14MB
  • 51. Project-50 Predicting Bike Rentals Count Using ML And H2O Auto ML/6. Splitting the Data.mp429.41MB
  • 51. Project-50 Predicting Bike Rentals Count Using ML And H2O Auto ML/7. Model Building and Prediction using ML.mp429.52MB
  • 51. Project-50 Predicting Bike Rentals Count Using ML And H2O Auto ML/8. Model Building and Prediction using H2O Auto ML Library.mp473.44MB
  • 6. Project-5 Text Extraction From Images Application/1. Introduction to text extraction.mp418.51MB
  • 6. Project-5 Text Extraction From Images Application/2. Importing libraries and data.mp433.9MB
  • 6. Project-5 Text Extraction From Images Application/3. Extracting the test from image.mp440.66MB
  • 6. Project-5 Text Extraction From Images Application/4. Modifying the extractor.mp469.93MB
  • 6. Project-5 Text Extraction From Images Application/5. creating the extractor app.mp438.63MB
  • 6. Project-5 Text Extraction From Images Application/6. Running the extractor app.mp414.85MB
  • 7. Project-6 Project On Plant Disease Prediction/1. Introduction.mp435.1MB
  • 7. Project-6 Project On Plant Disease Prediction/2. Importing libraries and data.mp431.75MB
  • 7. Project-6 Project On Plant Disease Prediction/3. Understanding the data.mp449.75MB
  • 7. Project-6 Project On Plant Disease Prediction/4. Model building.mp476.75MB
  • 7. Project-6 Project On Plant Disease Prediction/5. Creating an app using streamlit.mp451.26MB
  • 8. Project-7 Vehicle Detection And Counting/1. Introduction.mp425.8MB
  • 8. Project-7 Vehicle Detection And Counting/2. Importing libraries and data.mp422.37MB
  • 8. Project-7 Vehicle Detection And Counting/3. Transforming Images and creating output.mp499.02MB
  • 8. Project-7 Vehicle Detection And Counting/4. Creating A Flask App.mp483.96MB
  • 9. Project-8 Create A Face Swap Application/1. Introduction.mp420.38MB
  • 9. Project-8 Create A Face Swap Application/2. Importing libraries and data.mp436.2MB
  • 9. Project-8 Create A Face Swap Application/3. Data preprocessing and creating output.mp4127.48MB
  • 9. Project-8 Create A Face Swap Application/4. Creating A Flask App.mp478.44MB