本站已收录 番号和无损神作磁力链接/BT种子 

GetFreeCourses.Co-Udemy-The Data Science Course 2022 Complete Data Science Bootcamp

种子简介

种子名称: GetFreeCourses.Co-Udemy-The Data Science Course 2022 Complete Data Science Bootcamp
文件类型: 视频
文件数目: 398个文件
文件大小: 7.7 GB
收录时间: 2022-8-19 00:20
已经下载: 3
资源热度: 221
最近下载: 2024-12-28 21:28

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:e62d6200698652d758d6d8abf10576e79cc9f884&dn=GetFreeCourses.Co-Udemy-The Data Science Course 2022 Complete Data Science Bootcamp 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

GetFreeCourses.Co-Udemy-The Data Science Course 2022 Complete Data Science Bootcamp.torrent
  • 01 - Part 1_ Introduction/001 A Practical Example_ What You Will Learn in This Course.mp413.08MB
  • 01 - Part 1_ Introduction/002 What Does the Course Cover.mp449.69MB
  • 02 - The Field of Data Science - The Various Data Science Disciplines/001 Data Science and Business Buzzwords_ Why are there so Many_.mp454.72MB
  • 02 - The Field of Data Science - The Various Data Science Disciplines/002 What is the difference between Analysis and Analytics.mp48.01MB
  • 02 - The Field of Data Science - The Various Data Science Disciplines/003 Business Analytics, Data Analytics, and Data Science_ An Introduction.mp449.96MB
  • 02 - The Field of Data Science - The Various Data Science Disciplines/004 Continuing with BI, ML, and AI.mp435.94MB
  • 02 - The Field of Data Science - The Various Data Science Disciplines/005 A Breakdown of our Data Science Infographic.mp433.95MB
  • 03 - The Field of Data Science - Connecting the Data Science Disciplines/001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp421.73MB
  • 04 - The Field of Data Science - The Benefits of Each Discipline/001 The Reason Behind These Disciplines.mp412.41MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/001 Techniques for Working with Traditional Data.mp4105.52MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/002 Real Life Examples of Traditional Data.mp413.92MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/003 Techniques for Working with Big Data.mp460.48MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/004 Real Life Examples of Big Data.mp44.21MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/005 Business Intelligence (BI) Techniques.mp451.34MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/006 Real Life Examples of Business Intelligence (BI).mp419.35MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/007 Techniques for Working with Traditional Methods.mp474.75MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/008 Real Life Examples of Traditional Methods.mp421.17MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/009 Machine Learning (ML) Techniques.mp447.78MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/010 Types of Machine Learning.mp461.78MB
  • 05 - The Field of Data Science - Popular Data Science Techniques/011 Real Life Examples of Machine Learning (ML).mp422.44MB
  • 06 - The Field of Data Science - Popular Data Science Tools/001 Necessary Programming Languages and Software Used in Data Science.mp419.54MB
  • 07 - The Field of Data Science - Careers in Data Science/001 Finding the Job - What to Expect and What to Look for.mp49.48MB
  • 08 - The Field of Data Science - Debunking Common Misconceptions/001 Debunking Common Misconceptions.mp416.43MB
  • 09 - Part 2_ Probability/001 The Basic Probability Formula.mp429.13MB
  • 09 - Part 2_ Probability/002 Computing Expected Values.mp429.24MB
  • 09 - Part 2_ Probability/003 Frequency.mp436.39MB
  • 09 - Part 2_ Probability/004 Events and Their Complements.mp411.4MB
  • 10 - Probability - Combinatorics/001 Fundamentals of Combinatorics.mp43.21MB
  • 10 - Probability - Combinatorics/002 Permutations and How to Use Them.mp413.97MB
  • 10 - Probability - Combinatorics/003 Simple Operations with Factorials.mp413.98MB
  • 10 - Probability - Combinatorics/004 Solving Variations with Repetition.mp413.75MB
  • 10 - Probability - Combinatorics/005 Solving Variations without Repetition.mp414.76MB
  • 10 - Probability - Combinatorics/006 Solving Combinations.mp418.99MB
  • 10 - Probability - Combinatorics/007 Symmetry of Combinations.mp413.51MB
  • 10 - Probability - Combinatorics/008 Solving Combinations with Separate Sample Spaces.mp412.87MB
  • 10 - Probability - Combinatorics/009 Combinatorics in Real-Life_ The Lottery.mp416.16MB
  • 10 - Probability - Combinatorics/010 A Recap of Combinatorics.mp412MB
  • 10 - Probability - Combinatorics/011 A Practical Example of Combinatorics.mp442.24MB
  • 11 - Probability - Bayesian Inference/001 Sets and Events.mp417.44MB
  • 11 - Probability - Bayesian Inference/002 Ways Sets Can Interact.mp419.02MB
  • 11 - Probability - Bayesian Inference/003 Intersection of Sets.mp48.78MB
  • 11 - Probability - Bayesian Inference/004 Union of Sets.mp419.47MB
  • 11 - Probability - Bayesian Inference/005 Mutually Exclusive Sets.mp45.25MB
  • 11 - Probability - Bayesian Inference/006 Dependence and Independence of Sets.mp411.98MB
  • 11 - Probability - Bayesian Inference/007 The Conditional Probability Formula.mp416.33MB
  • 11 - Probability - Bayesian Inference/008 The Law of Total Probability.mp411.39MB
  • 11 - Probability - Bayesian Inference/009 The Additive Rule.mp410.89MB
  • 11 - Probability - Bayesian Inference/010 The Multiplication Law.mp419.8MB
  • 11 - Probability - Bayesian Inference/011 Bayes' Law.mp420.94MB
  • 11 - Probability - Bayesian Inference/012 A Practical Example of Bayesian Inference.mp4125.49MB
  • 12 - Probability - Distributions/001 Fundamentals of Probability Distributions.mp419.28MB
  • 12 - Probability - Distributions/002 Types of Probability Distributions.mp428.69MB
  • 12 - Probability - Distributions/003 Characteristics of Discrete Distributions.mp49.25MB
  • 12 - Probability - Distributions/004 Discrete Distributions_ The Uniform Distribution.mp410.08MB
  • 12 - Probability - Distributions/005 Discrete Distributions_ The Bernoulli Distribution.mp414.76MB
  • 12 - Probability - Distributions/006 Discrete Distributions_ The Binomial Distribution.mp424.94MB
  • 12 - Probability - Distributions/007 Discrete Distributions_ The Poisson Distribution.mp414.62MB
  • 12 - Probability - Distributions/008 Characteristics of Continuous Distributions.mp428.87MB
  • 12 - Probability - Distributions/009 Continuous Distributions_ The Normal Distribution.mp419.67MB
  • 12 - Probability - Distributions/010 Continuous Distributions_ The Standard Normal Distribution.mp420.72MB
  • 12 - Probability - Distributions/011 Continuous Distributions_ The Students' T Distribution.mp45.44MB
  • 12 - Probability - Distributions/012 Continuous Distributions_ The Chi-Squared Distribution.mp410.95MB
  • 12 - Probability - Distributions/013 Continuous Distributions_ The Exponential Distribution.mp415.76MB
  • 12 - Probability - Distributions/014 Continuous Distributions_ The Logistic Distribution.mp415.95MB
  • 12 - Probability - Distributions/015 A Practical Example of Probability Distributions.mp4138.31MB
  • 13 - Probability - Probability in Other Fields/001 Probability in Finance.mp439.66MB
  • 13 - Probability - Probability in Other Fields/002 Probability in Statistics.mp414.26MB
  • 13 - Probability - Probability in Other Fields/003 Probability in Data Science.mp423.94MB
  • 14 - Part 3_ Statistics/001 Population and Sample.mp410.89MB
  • 15 - Statistics - Descriptive Statistics/001 Types of Data.mp442.47MB
  • 15 - Statistics - Descriptive Statistics/002 Levels of Measurement.mp431.44MB
  • 15 - Statistics - Descriptive Statistics/003 Categorical Variables - Visualization Techniques.mp436.65MB
  • 15 - Statistics - Descriptive Statistics/005 Numerical Variables - Frequency Distribution Table.mp412.8MB
  • 15 - Statistics - Descriptive Statistics/007 The Histogram.mp43.85MB
  • 15 - Statistics - Descriptive Statistics/009 Cross Tables and Scatter Plots.mp419.7MB
  • 15 - Statistics - Descriptive Statistics/011 Mean, median and mode.mp417.53MB
  • 15 - Statistics - Descriptive Statistics/013 Skewness.mp49.92MB
  • 15 - Statistics - Descriptive Statistics/015 Variance.mp420.21MB
  • 15 - Statistics - Descriptive Statistics/017 Standard Deviation and Coefficient of Variation.mp420.14MB
  • 15 - Statistics - Descriptive Statistics/019 Covariance.mp418.41MB
  • 15 - Statistics - Descriptive Statistics/021 Correlation Coefficient.mp419.38MB
  • 16 - Statistics - Practical Example_ Descriptive Statistics/001 Practical Example_ Descriptive Statistics.mp437.17MB
  • 17 - Statistics - Inferential Statistics Fundamentals/001 Introduction.mp42.93MB
  • 17 - Statistics - Inferential Statistics Fundamentals/002 What is a Distribution.mp416.9MB
  • 17 - Statistics - Inferential Statistics Fundamentals/003 The Normal Distribution.mp416.16MB
  • 17 - Statistics - Inferential Statistics Fundamentals/004 The Standard Normal Distribution.mp48.62MB
  • 17 - Statistics - Inferential Statistics Fundamentals/006 Central Limit Theorem.mp422.86MB
  • 17 - Statistics - Inferential Statistics Fundamentals/007 Standard error.mp413.33MB
  • 17 - Statistics - Inferential Statistics Fundamentals/008 Estimators and Estimates.mp416.13MB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/001 What are Confidence Intervals_.mp428.38MB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/002 Confidence Intervals; Population Variance Known; Z-score.mp452.21MB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/004 Confidence Interval Clarifications.mp418.56MB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/005 Student's T Distribution.mp413.33MB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/006 Confidence Intervals; Population Variance Unknown; T-score.mp411.58MB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/008 Margin of Error.mp422.66MB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/009 Confidence intervals. Two means. Dependent samples.mp445.04MB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/011 Confidence intervals. Two means. Independent Samples (Part 1).mp412MB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/013 Confidence intervals. Two means. Independent Samples (Part 2).mp413.05MB
  • 18 - Statistics - Inferential Statistics_ Confidence Intervals/015 Confidence intervals. Two means. Independent Samples (Part 3).mp44.17MB
  • 19 - Statistics - Practical Example_ Inferential Statistics/001 Practical Example_ Inferential Statistics.mp422.1MB
  • 20 - Statistics - Hypothesis Testing/001 Null vs Alternative Hypothesis.mp480.83MB
  • 20 - Statistics - Hypothesis Testing/003 Rejection Region and Significance Level.mp438.2MB
  • 20 - Statistics - Hypothesis Testing/004 Type I Error and Type II Error.mp418.17MB
  • 20 - Statistics - Hypothesis Testing/005 Test for the Mean. Population Variance Known.mp436.96MB
  • 20 - Statistics - Hypothesis Testing/007 p-value.mp433.08MB
  • 20 - Statistics - Hypothesis Testing/008 Test for the Mean. Population Variance Unknown.mp419.72MB
  • 20 - Statistics - Hypothesis Testing/010 Test for the Mean. Dependent Samples.mp432.8MB
  • 20 - Statistics - Hypothesis Testing/012 Test for the mean. Independent Samples (Part 1).mp47.57MB
  • 20 - Statistics - Hypothesis Testing/014 Test for the mean. Independent Samples (Part 2).mp424.47MB
  • 21 - Statistics - Practical Example_ Hypothesis Testing/001 Practical Example_ Hypothesis Testing.mp416.3MB
  • 22 - Part 4_ Introduction to Python/001 Introduction to Programming.mp414.33MB
  • 22 - Part 4_ Introduction to Python/002 Why Python_.mp411.77MB
  • 22 - Part 4_ Introduction to Python/003 Why Jupyter_.mp47.96MB
  • 22 - Part 4_ Introduction to Python/004 Installing Python and Jupyter.mp432.86MB
  • 22 - Part 4_ Introduction to Python/005 Understanding Jupyter's Interface - the Notebook Dashboard.mp44.39MB
  • 22 - Part 4_ Introduction to Python/006 Prerequisites for Coding in the Jupyter Notebooks.mp415.38MB
  • 23 - Python - Variables and Data Types/001 Variables.mp48.93MB
  • 23 - Python - Variables and Data Types/002 Numbers and Boolean Values in Python.mp44.61MB
  • 23 - Python - Variables and Data Types/003 Python Strings.mp419.74MB
  • 24 - Python - Basic Python Syntax/001 Using Arithmetic Operators in Python.mp47.28MB
  • 24 - Python - Basic Python Syntax/002 The Double Equality Sign.mp42.72MB
  • 24 - Python - Basic Python Syntax/003 How to Reassign Values.mp41.86MB
  • 24 - Python - Basic Python Syntax/004 Add Comments.mp42.41MB
  • 24 - Python - Basic Python Syntax/005 Understanding Line Continuation.mp41014.51KB
  • 24 - Python - Basic Python Syntax/006 Indexing Elements.mp42.36MB
  • 24 - Python - Basic Python Syntax/007 Structuring with Indentation.mp42.8MB
  • 25 - Python - Other Python Operators/001 Comparison Operators.mp43.12MB
  • 25 - Python - Other Python Operators/002 Logical and Identity Operators.mp419MB
  • 26 - Python - Conditional Statements/001 The IF Statement.mp45.33MB
  • 26 - Python - Conditional Statements/002 The ELSE Statement.mp45.25MB
  • 26 - Python - Conditional Statements/003 The ELIF Statement.mp414.25MB
  • 26 - Python - Conditional Statements/004 A Note on Boolean Values.mp43.26MB
  • 27 - Python - Python Functions/001 Defining a Function in Python.mp43.23MB
  • 27 - Python - Python Functions/002 How to Create a Function with a Parameter.mp48.29MB
  • 27 - Python - Python Functions/003 Defining a Function in Python - Part II.mp46.45MB
  • 27 - Python - Python Functions/004 How to Use a Function within a Function.mp43.25MB
  • 27 - Python - Python Functions/005 Conditional Statements and Functions.mp46.04MB
  • 27 - Python - Python Functions/006 Functions Containing a Few Arguments.mp42.24MB
  • 27 - Python - Python Functions/007 Built-in Functions in Python.mp48.5MB
  • 28 - Python - Sequences/001 Lists.mp420.5MB
  • 28 - Python - Sequences/002 Using Methods.mp423.42MB
  • 28 - Python - Sequences/003 List Slicing.mp419.17MB
  • 28 - Python - Sequences/004 Tuples.mp49.5MB
  • 28 - Python - Sequences/005 Dictionaries.mp424.91MB
  • 29 - Python - Iterations/001 For Loops.mp423.58MB
  • 29 - Python - Iterations/002 While Loops and Incrementing.mp420.2MB
  • 29 - Python - Iterations/003 Lists with the range() Function.mp414.5MB
  • 29 - Python - Iterations/004 Conditional Statements and Loops.mp421.94MB
  • 29 - Python - Iterations/005 Conditional Statements, Functions, and Loops.mp42.91MB
  • 29 - Python - Iterations/006 How to Iterate over Dictionaries.mp416.46MB
  • 30 - Python - Advanced Python Tools/001 Object Oriented Programming.mp48.42MB
  • 30 - Python - Advanced Python Tools/002 Modules and Packages.mp41.71MB
  • 30 - Python - Advanced Python Tools/003 What is the Standard Library_.mp44.87MB
  • 30 - Python - Advanced Python Tools/004 Importing Modules in Python.mp48.53MB
  • 31 - Part 5_ Advanced Statistical Methods in Python/001 Introduction to Regression Analysis.mp42.92MB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/001 The Linear Regression Model.mp413.16MB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/002 Correlation vs Regression.mp43.75MB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/003 Geometrical Representation of the Linear Regression Model.mp41.75MB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/004 Python Packages Installation.mp423.7MB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/005 First Regression in Python.mp429.63MB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/007 Using Seaborn for Graphs.mp47.37MB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/008 How to Interpret the Regression Table.mp428.72MB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/009 Decomposition of Variability.mp48.62MB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/010 What is the OLS_.mp422.44MB
  • 32 - Advanced Statistical Methods - Linear Regression with StatsModels/011 R-Squared.mp410.79MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/001 Multiple Linear Regression.mp45.54MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/002 Adjusted R-Squared.mp434.22MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/004 Test for Significance of the Model (F-Test).mp45.9MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/005 OLS Assumptions.mp45.12MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/006 A1_ Linearity.mp42.66MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/007 A2_ No Endogeneity.mp48.99MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/008 A3_ Normality and Homoscedasticity.mp427.39MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/009 A4_ No Autocorrelation.mp47.67MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/010 A5_ No Multicollinearity.mp47.36MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/011 Dealing with Categorical Data - Dummy Variables.mp435.09MB
  • 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/013 Making Predictions with the Linear Regression.mp416.36MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/001 What is sklearn and How is it Different from Other Packages.mp46.24MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/002 How are we Going to Approach this Section_.mp44.03MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/003 Simple Linear Regression with sklearn.mp431.65MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp428.88MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/007 Multiple Linear Regression with sklearn.mp49.81MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/008 Calculating the Adjusted R-Squared in sklearn.mp416.92MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/010 Feature Selection (F-regression).mp415.68MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/012 Creating a Summary Table with P-values.mp46.45MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/014 Feature Scaling (Standardization).mp420.37MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/015 Feature Selection through Standardization of Weights.mp427.16MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/016 Predicting with the Standardized Coefficients.mp418.34MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/018 Underfitting and Overfitting.mp45.69MB
  • 34 - Advanced Statistical Methods - Linear Regression with sklearn/019 Train - Test Split Explained.mp435.58MB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/001 Practical Example_ Linear Regression (Part 1).mp484.84MB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/002 Practical Example_ Linear Regression (Part 2).mp431.9MB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/004 Practical Example_ Linear Regression (Part 3).mp46.91MB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/006 Practical Example_ Linear Regression (Part 4).mp429.84MB
  • 35 - Advanced Statistical Methods - Practical Example_ Linear Regression/008 Practical Example_ Linear Regression (Part 5).mp450.42MB
  • 36 - Advanced Statistical Methods - Logistic Regression/001 Introduction to Logistic Regression.mp44.41MB
  • 36 - Advanced Statistical Methods - Logistic Regression/002 A Simple Example in Python.mp421.91MB
  • 36 - Advanced Statistical Methods - Logistic Regression/003 Logistic vs Logit Function.mp443.96MB
  • 36 - Advanced Statistical Methods - Logistic Regression/004 Building a Logistic Regression.mp48.61MB
  • 36 - Advanced Statistical Methods - Logistic Regression/006 An Invaluable Coding Tip.mp416.77MB
  • 36 - Advanced Statistical Methods - Logistic Regression/007 Understanding Logistic Regression Tables.mp412.89MB
  • 36 - Advanced Statistical Methods - Logistic Regression/009 What do the Odds Actually Mean.mp411.38MB
  • 36 - Advanced Statistical Methods - Logistic Regression/010 Binary Predictors in a Logistic Regression.mp418.47MB
  • 36 - Advanced Statistical Methods - Logistic Regression/012 Calculating the Accuracy of the Model.mp420.28MB
  • 36 - Advanced Statistical Methods - Logistic Regression/014 Underfitting and Overfitting.mp47.25MB
  • 36 - Advanced Statistical Methods - Logistic Regression/015 Testing the Model.mp421.6MB
  • 37 - Advanced Statistical Methods - Cluster Analysis/001 Introduction to Cluster Analysis.mp410.66MB
  • 37 - Advanced Statistical Methods - Cluster Analysis/002 Some Examples of Clusters.mp435.12MB
  • 37 - Advanced Statistical Methods - Cluster Analysis/003 Difference between Classification and Clustering.mp49.53MB
  • 37 - Advanced Statistical Methods - Cluster Analysis/004 Math Prerequisites.mp44.47MB
  • 38 - Advanced Statistical Methods - K-Means Clustering/001 K-Means Clustering.mp410.53MB
  • 38 - Advanced Statistical Methods - K-Means Clustering/002 A Simple Example of Clustering.mp426.08MB
  • 38 - Advanced Statistical Methods - K-Means Clustering/004 Clustering Categorical Data.mp410.35MB
  • 38 - Advanced Statistical Methods - K-Means Clustering/006 How to Choose the Number of Clusters.mp419.79MB
  • 38 - Advanced Statistical Methods - K-Means Clustering/008 Pros and Cons of K-Means Clustering.mp410.93MB
  • 38 - Advanced Statistical Methods - K-Means Clustering/009 To Standardize or not to Standardize.mp410.5MB
  • 38 - Advanced Statistical Methods - K-Means Clustering/010 Relationship between Clustering and Regression.mp42.42MB
  • 38 - Advanced Statistical Methods - K-Means Clustering/011 Market Segmentation with Cluster Analysis (Part 1).mp421.16MB
  • 38 - Advanced Statistical Methods - K-Means Clustering/012 Market Segmentation with Cluster Analysis (Part 2).mp434.08MB
  • 38 - Advanced Statistical Methods - K-Means Clustering/013 How is Clustering Useful_.mp436.49MB
  • 39 - Advanced Statistical Methods - Other Types of Clustering/001 Types of Clustering.mp47.57MB
  • 39 - Advanced Statistical Methods - Other Types of Clustering/002 Dendrogram.mp417.34MB
  • 39 - Advanced Statistical Methods - Other Types of Clustering/003 Heatmaps.mp425.71MB
  • 40 - Part 6_ Mathematics/001 What is a Matrix_.mp411.7MB
  • 40 - Part 6_ Mathematics/002 Scalars and Vectors.mp48.39MB
  • 40 - Part 6_ Mathematics/003 Linear Algebra and Geometry.mp413.56MB
  • 40 - Part 6_ Mathematics/004 Arrays in Python - A Convenient Way To Represent Matrices.mp419.01MB
  • 40 - Part 6_ Mathematics/005 What is a Tensor_.mp411.61MB
  • 40 - Part 6_ Mathematics/006 Addition and Subtraction of Matrices.mp422.08MB
  • 40 - Part 6_ Mathematics/007 Errors when Adding Matrices.mp43.34MB
  • 40 - Part 6_ Mathematics/008 Transpose of a Matrix.mp420.49MB
  • 40 - Part 6_ Mathematics/009 Dot Product.mp411.36MB
  • 40 - Part 6_ Mathematics/010 Dot Product of Matrices.mp426.42MB
  • 40 - Part 6_ Mathematics/011 Why is Linear Algebra Useful_.mp486.18MB
  • 41 - Part 7_ Deep Learning/001 What to Expect from this Part_.mp47.56MB
  • 42 - Deep Learning - Introduction to Neural Networks/001 Introduction to Neural Networks.mp410.37MB
  • 42 - Deep Learning - Introduction to Neural Networks/002 Training the Model.mp47.57MB
  • 42 - Deep Learning - Introduction to Neural Networks/003 Types of Machine Learning.mp49.81MB
  • 42 - Deep Learning - Introduction to Neural Networks/004 The Linear Model (Linear Algebraic Version).mp47.87MB
  • 42 - Deep Learning - Introduction to Neural Networks/005 The Linear Model with Multiple Inputs.mp47.77MB
  • 42 - Deep Learning - Introduction to Neural Networks/006 The Linear model with Multiple Inputs and Multiple Outputs.mp416.23MB
  • 42 - Deep Learning - Introduction to Neural Networks/007 Graphical Representation of Simple Neural Networks.mp46.35MB
  • 42 - Deep Learning - Introduction to Neural Networks/008 What is the Objective Function_.mp46.03MB
  • 42 - Deep Learning - Introduction to Neural Networks/009 Common Objective Functions_ L2-norm Loss.mp44.47MB
  • 42 - Deep Learning - Introduction to Neural Networks/010 Common Objective Functions_ Cross-Entropy Loss.mp49.68MB
  • 42 - Deep Learning - Introduction to Neural Networks/011 Optimization Algorithm_ 1-Parameter Gradient Descent.mp422.7MB
  • 42 - Deep Learning - Introduction to Neural Networks/012 Optimization Algorithm_ n-Parameter Gradient Descent.mp416.35MB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/001 Basic NN Example (Part 1).mp45.14MB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/002 Basic NN Example (Part 2).mp415.23MB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/003 Basic NN Example (Part 3).mp415.68MB
  • 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/004 Basic NN Example (Part 4).mp430.06MB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/001 How to Install TensorFlow 2.0.mp427.34MB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/002 TensorFlow Outline and Comparison with Other Libraries.mp414.94MB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/003 TensorFlow 1 vs TensorFlow 2.mp414.95MB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/004 A Note on TensorFlow 2 Syntax.mp42.34MB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/005 Types of File Formats Supporting TensorFlow.mp47.25MB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/006 Outlining the Model with TensorFlow 2.mp426.99MB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/007 Interpreting the Result and Extracting the Weights and Bias.mp413.67MB
  • 44 - Deep Learning - TensorFlow 2.0_ Introduction/008 Customizing a TensorFlow 2 Model.mp416.78MB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/001 What is a Layer_.mp43.47MB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/002 What is a Deep Net_.mp411.06MB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/003 Digging into a Deep Net.mp419.14MB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/004 Non-Linearities and their Purpose.mp49.74MB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/005 Activation Functions.mp48.53MB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/006 Activation Functions_ Softmax Activation.mp48.42MB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/007 Backpropagation.mp419.49MB
  • 45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/008 Backpropagation Picture.mp47.68MB
  • 46 - Deep Learning - Overfitting/001 What is Overfitting_.mp410.5MB
  • 46 - Deep Learning - Overfitting/002 Underfitting and Overfitting for Classification.mp413.53MB
  • 46 - Deep Learning - Overfitting/003 What is Validation_.mp48.14MB
  • 46 - Deep Learning - Overfitting/004 Training, Validation, and Test Datasets.mp47.74MB
  • 46 - Deep Learning - Overfitting/005 N-Fold Cross Validation.mp45.14MB
  • 46 - Deep Learning - Overfitting/006 Early Stopping or When to Stop Training.mp48.5MB
  • 47 - Deep Learning - Initialization/001 What is Initialization_.mp417.42MB
  • 47 - Deep Learning - Initialization/002 Types of Simple Initializations.mp45.73MB
  • 47 - Deep Learning - Initialization/003 State-of-the-Art Method - (Xavier) Glorot Initialization.mp44.18MB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/001 Stochastic Gradient Descent.mp47.62MB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/002 Problems with Gradient Descent.mp43.51MB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/003 Momentum.mp45.01MB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp412.03MB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/005 Learning Rate Schedules Visualized.mp42.34MB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp48.24MB
  • 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/007 Adam (Adaptive Moment Estimation).mp46.88MB
  • 49 - Deep Learning - Preprocessing/001 Preprocessing Introduction.mp48.98MB
  • 49 - Deep Learning - Preprocessing/002 Types of Basic Preprocessing.mp42.4MB
  • 49 - Deep Learning - Preprocessing/003 Standardization.mp411.95MB
  • 49 - Deep Learning - Preprocessing/004 Preprocessing Categorical Data.mp45.34MB
  • 49 - Deep Learning - Preprocessing/005 Binary and One-Hot Encoding.mp48.36MB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/001 MNIST_ The Dataset.mp44.06MB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/002 MNIST_ How to Tackle the MNIST.mp47.66MB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/003 MNIST_ Importing the Relevant Packages and Loading the Data.mp412.24MB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/004 MNIST_ Preprocess the Data - Create a Validation Set and Scale It.mp422.93MB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/006 MNIST_ Preprocess the Data - Shuffle and Batch.mp432.71MB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/008 MNIST_ Outline the Model.mp422.09MB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/009 MNIST_ Select the Loss and the Optimizer.mp410.65MB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/010 MNIST_ Learning.mp431.03MB
  • 50 - Deep Learning - Classifying on the MNIST Dataset/012 MNIST_ Testing the Model.mp422.64MB
  • 51 - Deep Learning - Business Case Example/001 Business Case_ Exploring the Dataset and Identifying Predictors.mp451.38MB
  • 51 - Deep Learning - Business Case Example/002 Business Case_ Outlining the Solution.mp42.21MB
  • 51 - Deep Learning - Business Case Example/003 Business Case_ Balancing the Dataset.mp426.19MB
  • 51 - Deep Learning - Business Case Example/004 Business Case_ Preprocessing the Data.mp473.82MB
  • 51 - Deep Learning - Business Case Example/006 Business Case_ Load the Preprocessed Data.mp413.8MB
  • 51 - Deep Learning - Business Case Example/008 Business Case_ Learning and Interpreting the Result.mp427.77MB
  • 51 - Deep Learning - Business Case Example/009 Business Case_ Setting an Early Stopping Mechanism.mp443.81MB
  • 51 - Deep Learning - Business Case Example/011 Business Case_ Testing the Model.mp48.19MB
  • 52 - Deep Learning - Conclusion/001 Summary on What You've Learned.mp49.66MB
  • 52 - Deep Learning - Conclusion/002 What's Further out there in terms of Machine Learning.mp43.71MB
  • 52 - Deep Learning - Conclusion/004 An overview of CNNs.mp430.47MB
  • 52 - Deep Learning - Conclusion/005 An Overview of RNNs.mp46.75MB
  • 52 - Deep Learning - Conclusion/006 An Overview of non-NN Approaches.mp415.65MB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/002 How to Install TensorFlow 1.mp43.71MB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/004 TensorFlow Intro.mp416.56MB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/005 Actual Introduction to TensorFlow.mp46.17MB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/006 Types of File Formats, supporting Tensors.mp48.9MB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/007 Basic NN Example with TF_ Inputs, Outputs, Targets, Weights, Biases.mp428MB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/008 Basic NN Example with TF_ Loss Function and Gradient Descent.mp415.72MB
  • 53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/009 Basic NN Example with TF_ Model Output.mp417.09MB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/001 MNIST_ What is the MNIST Dataset_.mp44.23MB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/002 MNIST_ How to Tackle the MNIST.mp47.68MB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/003 MNIST_ Relevant Packages.mp47.88MB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/004 MNIST_ Model Outline.mp434.69MB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/005 MNIST_ Loss and Optimization Algorithm.mp411.56MB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/006 Calculating the Accuracy of the Model.mp416.64MB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/007 MNIST_ Batching and Early Stopping.mp48.7MB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/008 MNIST_ Learning.mp431.88MB
  • 54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/009 MNIST_ Results and Testing.mp438.19MB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/001 Business Case_ Getting Acquainted with the Dataset.mp460.26MB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/002 Business Case_ Outlining the Solution.mp42.89MB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/003 The Importance of Working with a Balanced Dataset.mp421.6MB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/004 Business Case_ Preprocessing.mp474.39MB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/006 Creating a Data Provider.mp456.23MB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/007 Business Case_ Model Outline.mp442.48MB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/008 Business Case_ Optimization.mp426.95MB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/009 Business Case_ Interpretation.mp418.59MB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/010 Business Case_ Testing the Model.mp44.39MB
  • 55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/011 Business Case_ A Comment on the Homework.mp419.64MB
  • 56 - Software Integration/001 What are Data, Servers, Clients, Requests, and Responses.mp419.17MB
  • 56 - Software Integration/002 What are Data Connectivity, APIs, and Endpoints_.mp458.83MB
  • 56 - Software Integration/003 Taking a Closer Look at APIs.mp465.29MB
  • 56 - Software Integration/004 Communication between Software Products through Text Files.mp49.28MB
  • 56 - Software Integration/005 Software Integration - Explained.mp441.99MB
  • 57 - Case Study - What's Next in the Course_/001 Game Plan for this Python, SQL, and Tableau Business Exercise.mp415.8MB
  • 57 - Case Study - What's Next in the Course_/002 The Business Task.mp46.8MB
  • 57 - Case Study - What's Next in the Course_/003 Introducing the Data Set.mp415.29MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/002 Importing the Absenteeism Data in Python.mp418.03MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/003 Checking the Content of the Data Set.mp454.27MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/004 Introduction to Terms with Multiple Meanings.mp418.04MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/006 Using a Statistical Approach towards the Solution to the Exercise.mp49.9MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/007 Dropping a Column from a DataFrame in Python.mp441.3MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/010 Analyzing the Reasons for Absence.mp427.63MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/011 Obtaining Dummies from a Single Feature.mp463.77MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/015 More on Dummy Variables_ A Statistical Perspective.mp43.18MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/016 Classifying the Various Reasons for Absence.mp451.32MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/017 Using .concat() in Python.mp419.77MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/020 Reordering Columns in a Pandas DataFrame in Python.mp47.18MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/023 Creating Checkpoints while Coding in Jupyter.mp417.34MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/026 Analyzing the Dates from the Initial Data Set.mp440.13MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/027 Extracting the Month Value from the _Date_ Column.mp438.91MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/028 Extracting the Day of the Week from the _Date_ Column.mp49.12MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/030 Analyzing Several _Straightforward_ Columns for this Exercise.mp412.23MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/031 Working on _Education_, _Children_, and _Pets_.mp419.69MB
  • 58 - Case Study - Preprocessing the 'Absenteeism_data'/032 Final Remarks of this Section.mp417.04MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/001 Exploring the Problem with a Machine Learning Mindset.mp411.08MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/002 Creating the Targets for the Logistic Regression.mp432.5MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/003 Selecting the Inputs for the Logistic Regression.mp44.64MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/004 Standardizing the Data.mp415.14MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/005 Splitting the Data for Training and Testing.mp436.12MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/006 Fitting the Model and Assessing its Accuracy.mp435.29MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/007 Creating a Summary Table with the Coefficients and Intercept.mp426.98MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/008 Interpreting the Coefficients for Our Problem.mp434.41MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/009 Standardizing only the Numerical Variables (Creating a Custom Scaler).mp428.02MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/010 Interpreting the Coefficients of the Logistic Regression.mp415.22MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/011 Backward Elimination or How to Simplify Your Model.mp431.96MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/012 Testing the Model We Created.mp431.63MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/013 Saving the Model and Preparing it for Deployment.mp425.52MB
  • 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/016 Preparing the Deployment of the Model through a Module.mp428.57MB
  • 60 - Case Study - Loading the 'absenteeism_module'/002 Deploying the 'absenteeism_module' - Part I.mp48.38MB
  • 60 - Case Study - Loading the 'absenteeism_module'/003 Deploying the 'absenteeism_module' - Part II.mp425.99MB
  • 61 - Case Study - Analyzing the Predicted Outputs in Tableau/002 Analyzing Age vs Probability in Tableau.mp438.69MB
  • 61 - Case Study - Analyzing the Predicted Outputs in Tableau/004 Analyzing Reasons vs Probability in Tableau.mp440.24MB
  • 61 - Case Study - Analyzing the Predicted Outputs in Tableau/006 Analyzing Transportation Expense vs Probability in Tableau.mp410.87MB
  • 62 - Appendix - Additional Python Tools/001 Using the .format() Method.mp421.67MB
  • 62 - Appendix - Additional Python Tools/002 Iterating Over Range Objects.mp47.85MB
  • 62 - Appendix - Additional Python Tools/003 Introduction to Nested For Loops.mp412.26MB
  • 62 - Appendix - Additional Python Tools/004 Triple Nested For Loops.mp419.4MB
  • 62 - Appendix - Additional Python Tools/005 List Comprehensions.mp443.23MB
  • 62 - Appendix - Additional Python Tools/006 Anonymous (Lambda) Functions.mp433.71MB
  • 63 - Appendix - pandas Fundamentals/001 Introduction to pandas Series.mp422.22MB
  • 63 - Appendix - pandas Fundamentals/002 Working with Methods in Python - Part I.mp416.8MB
  • 63 - Appendix - pandas Fundamentals/003 Working with Methods in Python - Part II.mp45.77MB
  • 63 - Appendix - pandas Fundamentals/004 Parameters and Arguments in pandas.mp415.45MB
  • 63 - Appendix - pandas Fundamentals/005 Using .unique() and .nunique().mp426.33MB
  • 63 - Appendix - pandas Fundamentals/006 Using .sort_values().mp413.2MB
  • 63 - Appendix - pandas Fundamentals/007 Introduction to pandas DataFrames - Part I.mp410.6MB
  • 63 - Appendix - pandas Fundamentals/008 Introduction to pandas DataFrames - Part II.mp417.83MB
  • 63 - Appendix - pandas Fundamentals/009 pandas DataFrames - Common Attributes.mp429.8MB
  • 63 - Appendix - pandas Fundamentals/010 Data Selection in pandas DataFrames.mp437.28MB
  • 63 - Appendix - pandas Fundamentals/011 pandas DataFrames - Indexing with .iloc[].mp423.54MB
  • 63 - Appendix - pandas Fundamentals/012 pandas DataFrames - Indexing with .loc[].mp420.72MB